• Title/Summary/Keyword: ${\beta}$ plane

Search Result 131, Processing Time 0.02 seconds

The Crystal and Molecular Structure of Dipropargyldiphenylmethane (디프로파질디페닐메탄의 결정 및 분자구조)

  • Ahn Choong Tai;Choi Sam-Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.473-476
    • /
    • 1993
  • Dipropargyldiphenylmetane, $C_{19}H_{16}, crystallizes in a monoclinic space group $C2/_c$$ with a = 11304(3), b = 20.799(5), c = 6.622(2)${\AA}$, ${\beta} = 112.8(3)^{\circ}$, Z = 4, V = 1435.3${\AA}^3,\;F(000)\;=\;520,\;D_c\;=\;1.14g{\cdot}cm^{-3}$ and ${\mu}\;=\;0.32\;cm^{-1}$. The structure was solved by direct methods and all non-H atoms were identified in the E-map. The final refinement gave R = 0.055 from 1328 unique observed reflections with I $\geq$ -1.0 $\sigma(I).$ The molecule belongs to the point group $C_2$ of Symmetry by possessing the 2-fold axis which coincides witeh the crystallographic symmetry axis in the unit cell. The linear propargyl moiety is nearly $perpendicular(94.2)^{\circ}$ to the molecular plane of the benzene ring. The internal angle of methane carbon atoms in $108.1(1)^{\circ}$, bonding to the benzene and the propargyl moiety with the bond lengths of 1.530(2) and $1.560(2)\AA$, respectively. The shortest contant between the molecules is $3.538(2)\AA$ between C(9) and C(9) (-x, y, -1/2-z).

  • PDF

Application of Modelling Stress-Strain Relations (Part II) -A Trend of Parameters- (응력-변형률 관계 정식화의 적용성(II) -파라메타의 경향성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.19-27
    • /
    • 2013
  • Tatsuoka and Shibuya (1991) suggest a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. We have carried out the plain strain compression test employing 7 kinds of research standard sand specimens and 2 kinds of glass beads, which have been used at world-renowned research institutes. With the result applied to Tatsuoka and Shibuya's newly suggested formulation, we studied a trend of parameters. In conclusion, as the value of confining pressure increases, the value of $C_1(X={\infty})$ becomes greater but there are hardly any changes in the value of $C_2(X={\infty})$. The value of $C_1(X={\infty})$ also becomes greater as the ${\delta}$ value increases, regardless of sand types. However, the values of $C_2(X={\infty})$ and $C_2$(X=Xe) do not show any significant changes when there are changes in the value of ${\delta}$, while the values of ${\alpha}$ and ${\beta}$ tend to decrease as the ${\delta}$ value decreases.

The Rietveld Structure Refinement of Natural Phlogopite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 금운모 결정에 대한 리트벨트 구조분석)

  • 이철규;송윤구;전철민;김신애;성기훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The Rietveld structure refinement for the natural trioctahedral mica, phlogopite-1M (Parker Mine, Quebec, Canada) has been done by high resolution neutron powder diffraction at $25^{\circ}C$ and -263$^{\circ}C$. The structural formula of phlogopite determined by electron probe microanalysis is $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$). Cell parameters are a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$. Refinements converged to R values in the range of $R_{p}$=2.35%, $R_{wp}$=3.01%, respectively. In this study, the OH bond length is calculated to 0.93 $\AA$ at room temperature and 1.03 $\AA$ at -263$^{\circ}C$, and the angles between OH vector and (001) plane are obtained 93.4$^{\circ}$∼93.6$^{\circ}$. The decrease in the length of OH with the increase in temperature should be due to the hydrogen bonding in the structure of phogopite.e.e.f phogopite.e.e.

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections-Chord web failure mode- (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(II)-주관 웨브 파괴모드-)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • This paper described the ultimate strength and deformation limit of new uniplanar T-joints in cold-formed square hollow sections. The new T-joint had the configuration that only a branch member was oriented at 45 degrees to a chord member in the plane of the truss. This study focused on the branch-rotated T-joints governed by chord web failure. Based on the test results of the T-joint in cold-formed square hollow sections, the deformation lirnit was found to be 3%B for $16.7{\leq}2(B/T){\leq}33.3$ and $0.63{\leq}(b_1/B)=0.7$. Existing strength formulas for traditional T-joint were investigated, and the new strength formula for the branch-rotated T-joint was proposed. This proposed formula was based on column buckling theory considering the rounded corners of cold-formed square hollow sections. Finally, the optimization condition of yield stress and $2{\gamma}$ was recommended to select the optimized chord section.

Synthesis and Structure of Bis(ethylenediamine) cuprate(II)$\cdot$Dichromate (Bis(ethylenediamine) cuprate(II)$\cdot$Dichromate의 합성 및 결정구조 연구)

  • Kim, Seung-Bin;Namgung, Hae
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • The crystal structure of Bis(ethylenediamine) cuprate(II)$\cdot$dichromate, $Cu(C_2H_8N_2)_2{\cdot}Cr_2O_7$, has been determined by X-ray crystallography. Crystal data: a=5.682(2), b=8.567(3), c=14.839(3) ${\AA},\;{\alpha}=97.50(2),\;{\beta}=101.06(1),\;{\gamma}=109.38(2)^{\circ}$ Triclinic, P-1 (SG No=2), Z=2, V=653.9(2) ${\AA}^3,\;D_c=2.030gcm^{-3},\;{\mu}=3.273mm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods uslng unit weights. The final R and S values were $R_1=0.0256,\;R_w=0.0708,\;R_{all}=0.0316,\;S=1.151$ for the observed 2291 reflections. The two cupper complex ion has the usual distorted octahedral structure with mean four Cu-N distances of 2.010(3) $\AA$ and the longer mean Cu-O distance of 2.525(2) $\AA$. The Cu-complex and dichromate ions are linked to form infinite chain arranged alternatively along the [111]-direction. The neighboring chains in the (0-11) plane are connected with N1-O5 and N3-O1 hydrogen bonds.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Crystal Structure of Probenecid, $C_{13}H_{19}NO_4S$ (Probenecid, $C_{13}H_{19}NO_4S$의 結晶構造)

  • Kim, Eui-Sung;Shin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.603-606
    • /
    • 1991
  • The crystal structure of Probenecid has been determined from 2574 independent reflections collected on an automatic ENRAF-NONIUS CAD-4 diffractometer using graphite-monochromated $Mo-K{\alpa}$ radiation. The crystal is triclinic, space group P$\bar{1}$ with unit cell dimensions a = 7.535(2)${\AA}$, b = 18.473 (5)${\AA}$, c = 5.317(9)${\AA}$, ${\alpha} = 92.00(5)^{\circ}$, ${\beta} = 99.02(5)^{\circ}$, ${\gamma} = 94.89(2)^{\circ}$, V = 727.4(2)${\AA}^3$, Z = 2, $D_m$ = 1.310, $D_x$ = $1.302 gcm^{-3}$, ${\mu}$ = $1.88 cm^{-1}$, F(000) = 304, and T = 298 K. Final R = 0.0676 and $R_w$ = O.0630 for 1209 reflections > 5${\sigma}(F_o)$. In the spacial arrangement about N(13), the sum of bond angles about nitrogen is 350.9° and the nitrogen lies only 0.268(6)${\AA}$ out of S(1)-C(14)-C(17) plane. The S(1)-C(4) distance is 1.792(6)${\AA}$ and the C(4)-S(1)-N(13) angle is $106.5(3)^{\circ}$. The overall conformation of the molecule is folded with respect to sulfur.

  • PDF

The Crystal and Molecular Structure of Sulfadiazine (Sulfadiazine의 結晶 및 分子構造)

  • Shin Hyun So;Ihn Gwon Shik;Kim Hoon Sup;Koo Chung Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.329-340
    • /
    • 1974
  • Sulfadiazine, $C_{10}H_{10}N_4O_2S$, forms monoclinic crystals of space group $P21}c$ from a mixture of acetone and ethanol with $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$, and four molecules per cell. Three dimensional photographic data were collected with $CuK\alpha$ radiation. The structure was determined using Patterson and Fourier synthesis methods and refined by block diagonal least-squares methods with isotropic thermal parameter for all non-hydrogen atoms. The final R value was 0.15 for the 1517 observed independent reflections. The dihedral angle between the planes through the benzene ring and the pyrimidine ring is $76^{\circ}$. The conformational angle formed by the projection of the S-C(5) bond with that of N(1)-C(1) where the projection is taken along the S-N(1) bond is $77^{\circ}$. The imino nitrogen atom, N(1), and pyrimidine nitrogen atom, N(3), form intermolecular $N-H{\cdots}N$ hydrogen bond between the molecules related by center of symmetry. Amino nitrogen atom, N(4), forms two intermolecular $N-H{\cdots}O$ hydrogen bonds, with O(1) and O(2) atoms of different molecules separated by b. A two dimensional network of hydrogen bonds form infinite molecular sheets parallel to the (100) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

The Crystal and Molecular Structure of 6-Ethyl-5,6-Dihydrouracil (6-에틸-5,6-디히드로우라실의 결정 및 분자구조)

  • An, Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.161-166
    • /
    • 1996
  • 6-ethyl-5,6-dihydrouracil($C_6H_10N_2O_2$) is monoclinic, space group $$P2_{1}c}$$ with a=10.302(2), b=10.419(3), $c=7.095(1)\AA$, $\beta=106.6(0)$, Z=4, $V=729.7(3)\AA$^3$$, $D_c=1.29 g/cm^3,\;{\lambda}(MoK\alpha)=0.71073\AA$, $\mu=0.010cm^{-1}$, F(000)=304, and R=0.054 for 1070 unique observed reflection with F>4.0 $\sigma(F).$ The structure was solved by direct methods and refined by full-matrix least-squares refinement with the fixed C-H bond length at $0.96\AA.$ The hydrouracil molecule makes an envelope conformation with the ethyl substituent oriented to an axial position attainable to a varying degree of steric strain. There are two intermolecular hydrogen-bondings via N-H---O interactions, being nearly parallel to the 100 plane. The shortest distance between molecules is $3.187\AA$ of C(4) and O(8) (-x,-y, 1-z).

  • PDF

The Crystal and Molecular Structure of Sulfaguanidine Monohydrate (Sulfaguanidine Monohydrate의 結晶 및 分子構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup;Shin, Whan-Chul;Choe, Chu-Hyn
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.97-109
    • /
    • 1974
  • The crystal and molecular structure of sulfaguanidine monohydrate, $C_7H_{10}N_4O_2S{\cdot}H_2O$, was determined from visually estimated intensity data from Weissenberg photographs. The crystal data are monoclinic, space group $P2_1$/c with four molecules in a unit cell of dimensions, ${\alpha}=7.57{\pm}0.03,\;b=5.44{\pm}0.02,\;c=24.76{\pm}0.06{\AA},\;{\beta}=91.0{\pm}0.2^{\circ}$. The structure has been solved by an interpretation of a Patterson map and with a help of a direct procedure on a projection. The parameters were refined isotropically by block-diagonal least-squares methods using 1542 observed independent reflections to give R = 0.14. By hydrogen bonding a guanidyl nitrogen of a sulfaguanidine molecule is linked to the sulfonyl oxygens of the other molecules indirectly through two different water molecules. The role of water molecule is both a donor and an acceptor in hydrogen-bonding formation and these hydrogen bonds are tetrahedrally oriented. The hydrogen-bonding networks form infinite molecular layers parallel to (001) plane.

  • PDF