6－에틸－5，6－디히드로우라실의 결정 및 분자구조
 安 至 泰
 한국외국어대학교 자연과학대학 화학과
 （1995．8． 7 접수）

The Crystal and Molecular Structure of 6－Ethyl－5，6－Dihydrouracil

Choong Tai Ahn
Department of Chemistry，Hankuk University of Foreign Studies，Seoul 130－791，Korea
（Received August 7，1995）

 $c=7.095(1) \AA, \beta=106.6(0)^{\circ}, Z=4, V=729.7(3) \AA^{3}, D_{c}=1.29 \mathrm{~g} / \mathrm{cm}^{3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \mu=0.010 \mathrm{~cm}^{-1}, F$ $(000)=304$ 이며，$F>4.0 \sigma(F)$ 인 1070 개의 관축된 회절점에 대한 R 값은 0.054 였다．직접법에 의하여 구조를 풀었으며，전행열－최소자숭법에 의하여 정밀화하였고， $\mathrm{C}-\mathrm{H}$ 결합길이는 $0.96 \AA$ 에 고정하였다．Hydrouracil 고리는 불규칙한 puckered 각을 가진 envelope conformation으로 되어 있고，고리에 붙어 있는 에털기는 axial 방향으로 향하고 있으며，단위격자속에는 100 평면에 거의 평행인 2 차원의 결합망을 이룬，두 개의 분자간 수소결합， $\mathrm{N}(1)-\mathrm{H}--\mathrm{O}(7)(1+x, 0.5-y,-0.5+z)$ 와 $\mathrm{N}(3)-\mathrm{H}--\mathrm{O}(7)(1+x, 0.5-y, 0.5+z)$ 가 있으며，이웃 분 자와의 최단거리는 $\mathrm{C}(4)--\mathrm{O}(8)(-x,-y, 1-z)$ 의 $3.187 \AA$ 이다．
ABSTRACT．6－ethyl－5，6－dihydrouracil $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ is monoclinic，space group $\mathrm{P} 2_{1 / \mathrm{c}}$ with $a=10.302(2)$ ， $b=10.419(3), c=7.095(1) \AA, \beta=106.6(0), Z=4, V=729.7(3) \AA^{3}, D_{r}=1.29 \mathrm{~g} / \mathrm{cm}^{3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \mu=$ $0.010 \mathrm{~cm}^{-1}, F(000)=304$ ，and $R=0.054$ for 1070 unique observed reflection with $F>4.0 \sigma(\mathrm{~F})$ ．The structure was solved by direct methods and refined by full－matrix least－squares refinement with the fixed $\mathrm{C}-\mathrm{H}$ bond length at $0.96 \AA$ ．The hydrouracil molecule makes an envelope conformation with the ethyl substi－ tuent oriented to an axial position attainable to a varying degree of steric strain．There are two intermole－ cular hydrogen－bondings via $\mathrm{N}-\mathrm{H}--\mathrm{O}$ interactions，being nearly parallel to the 100 plane．The shortest distance between molecules is $3.187 \AA$ of $C(4)$ and $O(8)(-x,-y, 1-z)$ ．

INTRODUCTION

The derivertives of 5,6 －dihydrouracil were pre－ pared ${ }^{1}$ by the condensa－tion of α, β－unsaturated acid with urea or hydrogenation of their related－ compounds ${ }^{2-4}$ and the spectroscpic studies ${ }^{5.6}$ have been widely done on their conformational charac－ teristics．

Structural informations of hydrouracil have been known to have a half－chair conformation ${ }^{5.6}$ and its $C(6)$－substitent equatorial seems to be more favo－ rable than the one with the substituent axial．

However，Katritzky et al．${ }^{5}$ have extensively stu－ died the NMR spectra of dihydrouracils and sug－
gested the axial arrangement of $C(6)$－substituents in 5，6－dihydro－6－phenyluracil，orotic acid and its methyl ester．It is of interest to confirm the con－ formation of the title compound by X－ray diffrac－ tion method and to prove its structure clearly，

R：alkyl or H

whose $I R$ and NMR data were in sufficient to determine the detailed structure of the molecule. The existance of the hydrogen-bond might also give us some structural information.

EXPERIMENTAL

Title compound was synthesized by published procedure ${ }^{7}$ and single crystals were grown by slow evaporation in water at room termperature. The crystals have the shape of a colorless laths and the $0.20 \times 0.42 \times 0.81 \mathrm{~mm}$ sizes of a crystal were used for data collection.

Accurate lattice parameters were obtained by least-squares refinement, setting for the 25 reflections in the ranges $3.5<\theta<11.8^{\circ}$ measured with graphite-monochromatized $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$) on the Siemens P4 diffractometer with XSCANS software at 298 K . Intensities were recorded by the $\omega-2 \theta$ scan technique (scan range (ω)) $=$

Fig. 1. A molecular conformation with the atomic labelling scheme of 6-ethyl-5,6-dihydrouracil.
1.34°) with variable scan speed from 10.0 to 60.0
${ }^{\circ} / \mathrm{min}$, in ω and $2 \theta_{\text {max }}=50.0^{\circ}$ for the ranges -12 $\leq h \leq 12,-12 \leq k \leq 12,-1 \leq l \leq 8$.

The three standard reflections monitored every 97 reflections showed only 0.5% variations of intensity during the course of data collection.

In the 1289 independent reflections with Rint $=$ 0.025 out of 3254 measured reflections, the 1070 unique observed reflections with $F>4.0 \sigma(F)$ were used in structure determination. Corrections for Lorentz and polarization effects were applied to the intensity data,while no absorption or extinction correction was carried out.

The space group was obtained from sysmatic absences with: $h k l$; no condition, $h 0 l ; l=2 n, 0 k 0$; $k=2 n$, and the structure was solved by direct methods ${ }^{8}$ and refined by full-matrix least-squares refinement, ${ }^{8}$ with all non-hydrogen atoms by anisotropic thermal parameters and hydrogen atoms fixed at $0.96 \AA$ by isotropic ones. The final R and $w R$ values with 91 least-squares parameters were 0.054 and 0.063 , where $w^{-1}=\left(\sigma^{2}\left(F_{o}^{2}\right)+(0.0737 P)^{2}\right.$ $+0.08 P), P=\left(\operatorname{Max}\left(F_{\theta}^{2}, 0\right)+2 F_{c}^{2}\right) / 3$ and goodness of fit $=1.12$.
The $(\Delta / \sigma)_{\text {max }}$ of the final cycle was 0.002 and a difference Fourier map showed the highest peak $0.20 \mathrm{e}^{-3}$ and the lowest hole $-0.26 \mathrm{e} \AA^{-3}$.

All atomic scattering factors were from the International Tables for X-ray Crystallography (1974) ${ }^{9}$

Table 1. Crystal data

Formula	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	142.16
Crystal system	monoclinic
Space group	$\mathrm{P}_{1 / \mathrm{c}}$
Unit cell demensions	$a=10.302(2) \AA$
	$b=10.419(3)$
	$\beta=106.6(0)^{\circ}$
	$c=7.095(1)$
Volume	$729.7(3) \AA^{-3}$
Z	4
Density(cal.)	$1.29{\mathrm{~g} / \mathrm{cm}^{3}}^{\text {Absorption coefficient }}$
$0.010 \mathrm{~cm}^{-1}$	
F(000)	304
Systematic absences	$h k l ; n o$ condition
	$h 0 l ; l=2 n$
	$0 k 0 ; k=2 n$

and calculations were performed using the SHE-LXL-93 programs.

Table 2. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic temperature factors ($\AA^{2} \times 10^{3}$)

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{N}(1)$	$8018(2)$	$4193(1)$	$-5(2)$.049
$\mathrm{C}(2)$	$7905(2)$	$3517(2)$	$1530(2)$.042
$\mathrm{~N}(3)$	$8011(2)$	$4183(1)$	$3258(2)$.043
$\mathrm{C}(4)$	$8484(2)$	$5420(2)$	$3636(2)$.044
$\mathrm{C}(5)$	$8862(2)$	$6065(2)$	$1982(3)$.050
$\mathrm{C}(6)$	$8019(2)$	$5605(2)$	$-30(3)$.046
$0(7)$	$7708(2)$	$2338(1)$	$1482(2)$.055
$\mathrm{O} 8)$	$8603(2)$	$5898(1)$	$5238(2)$.059
$\mathrm{C}(9)$	$6597(2)$	$6151(2)$	$-628(3)$.060
$\mathrm{C}(10)$	$5739(3)$	$5709(3)$	$-2627(4)$.088
$\mathrm{H}(1 \mathrm{~A})$	790	368	-111	.065
$\mathrm{H}(3 \mathrm{~A})$	785	370	419	.052
$\mathrm{H}(5 \mathrm{~A})$	1000	592	225	.091
$\mathrm{H}(5 \mathrm{~B})$	874	696	204	.061
$\mathrm{H}(6 \mathrm{~A})$	855	585	-101	.056
$\mathrm{H}(9 \mathrm{~A})$	678	710	-69	.074
$\mathrm{H}(9 \mathrm{~B})$	608	601	42	.071
$\mathrm{H}(10 \mathrm{~A})$	481	621	-305	.141
$\mathrm{H}(10 \mathrm{~B})$	615	581	-360	.136
$\mathrm{H}(10 \mathrm{C})$	549	481	-259	.151

${ }^{*} U_{\text {eq }}=\left[1 / 3\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right]\right.$
$\left(U_{11} \sin ^{2} \alpha+U_{22} \sin ^{2} \beta+U_{33} \sin ^{2} \gamma+2 U_{12} \sin \alpha \sin \beta \cos \gamma\right.$
$\left.+2 U_{13} \sin \alpha \sin \gamma \cos \beta+2 U_{23} \sin \beta \sin \gamma \cos \alpha\right)$.

RESULTS AND DISCUSSION

Fig. 1 depicts the plot of a molecular structure with the atomic numbering scheme and Table 1 gives crystal data. Table 2 lists the final atomic coordinates with the equivalent isotropic thermal parameters. Table 3 gives bond lengths and hydro-gen-bonds, and Table 4 for bond angles and selected torsion angles.

The bond lengths and bond angles containing the nitrogen atom $(\mathrm{N}(3))$ and diones in the uracil group, are appeared to be similar to those which were found in other uracil derivertives ${ }^{10,11}$ or hete-

Table 3. Bond distances (\AA) and hydrogen bonds with e.s.d.'s in parentheses

(a) bond length			
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.330(2)$	$\mathrm{N}(1)-\mathrm{C}(6)$	$1.471(2)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$1.386(2)$	$\mathrm{C}(2)-\mathrm{O}(7)$	$1.244(2)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.377(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.497(3)$
$\mathrm{C}(4)-\mathrm{O}(8)$	$1.215(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.521(3)$
$\mathrm{C}(6)-\mathrm{C}(9)$	$1.515(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.512(3)$

(b) hydrogen-bonding geometry

	(a) $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{la})-\mathrm{O}(7)$	(b) $\mathrm{N}(3)-\mathrm{H}(3 \mathfrak{a})-\cdots \mathrm{O}(7)$
D-H	$0.929(2) \AA$	$0.881(2) \AA$
H--A	$1.971(2)$	$1.995(2)$
D-A	$2.899(2)$	$2.872(2)$
ang.D-H-A	$176.8(2)^{\circ}$	$173.1(2)^{\circ}$
*Symmetry code:	(a) $x, 0.5-y,-0.5+z$.	
	(b) $x, 0.5-y, 0.5+z$.	

Table 4. (a) Bond angles (${ }^{\circ}$) and (b) selected torsion angles (${ }^{\circ}$) with e.s.d.'s in parentheses

(a) bond angles			
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	$117.1(2)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(2)$	$125.1(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$107.8(2)$	
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$112.8(2)$	
$\mathrm{O}(7)-\mathrm{C}(2)-\mathrm{N}(1)$	$\mathrm{O}(7)-\mathrm{C}(2)-\mathrm{N}(3)$	$119.3(1)$	
$\mathrm{O}(8)-\mathrm{C}(4)-\mathrm{N}(3)$	$\mathrm{O}(8)-\mathrm{C}(4)-\mathrm{C}(5)$	$124.8(2)$	
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{N}(1)$	$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(5)$	$113.0(2)$	
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(6)$			
(b) selected torsion angles	$123.5(1)$		
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$112.0(2)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(7)$	$169.3(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-10.4(2)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(9)$	$-84.2(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$40.8(2)$	$\mathrm{O}(7)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$166.6(3)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-13.6(2)$	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{O}(8)$	$-176.2(3)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1.8(2)$	$\mathrm{O}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-151.3(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$30.7(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	$75.6(2)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$-48.8(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$179.9(3)$

1996, Vol. 40, No. 3

Table 5．Comparisons of fluctuations of bond lengths and bond angles in non－diones part of a uracil group： ADT，ADN and AFD

（a）bond lengths（ \AA ）			
	$\mathrm{C}(4)-\mathrm{C}(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$\mathrm{C}(6)-\mathrm{N}(1)$
title compound：	1．497（3）	$1.521(3)$	1．471（2）
ADT：molecule A：	1．400（1）	1．38（1）	$1.381(9)$
ADT：molecule B：	1．40（1）	1．37（1）	1．368（9）
ADN：	1．452（4）	1．431（5）	1．361（4）
AFD：	1．438（8）	$1.382(8)$	1．365（7）
（b）bond angles（ ${ }^{\circ}$ ）			
	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) \quad \mathrm{C}$		－$(6)-\mathrm{N}(1)$
title compound：	112．8（2）		107．8（2）
ADT：molecule A：	121．7（6）		18．66）
ADT：molecule B：	122．7（6）		18．3（7）
ADN：	120．4（3）		18．5（3）
AFD：	121．3（6）		119．8（6）

rocyclic dione－derivertives．${ }^{12 \sim 15}$ Other bond leng－ ths and angles in the group，however，show some fluctuations，due to the linking branched－group on the $C(5)$ and $C(6)$ atoms．These comparisons with 6－amino－1，3－dimethyl－5－（dimethylamino）－1，2，3，4－ tetrazol－1－yl）uracil hemihydrate（ADT），${ }^{10}$ 6－amino－ 1，3－dimethyl－5－nitrosouracil monohydrate（ADN）${ }^{11}$ and 6－amino－5－formyl－1，3－dimethyluracil monoh－ ydrate（AFD）${ }^{11}$ are given in Table 5.

The least－squares planes of the hydrouracil ring are given Table 6．The plane through five atoms， $N(1), C(2), N(3), C(4)$ and $C(5)$ ，is puckered but almost planar with the maximum deviation from its best plane of $-0.099(2) \AA$ for the $C(2)$ atom， and the $C(6)$ atom with the ethyl－substituent is displaced by $0.564(2) \AA$ upwards from its plane．

Table 6．Least－squares planes with displacement (\AA) from the best plane．Equation is expressed in the form of $A x+B y+C z=D$ ，where x, y ，and z are in \AA

A．least－squares planes related to the dihydrouracil and the ethyl groups

Atom in plane	Shifts	Atoms out of plane	Shifts	Constants			
				A	B	C	D
$\mathrm{N}(1)$	．055（2）			$-.8950$	． 3464	－． 2811	－5．9339
C（2）	－．099（2）						
$\mathrm{N}(3)$	．027（2）						
C（4）	．034（2）						
$\mathrm{C}(5)$	－．067（2）						
		C（6）	．564（2）				
		O（7）	－．343（2）				
		0 （8）	．082（2）				
		$\mathrm{C}(9)$	2．077（2）				
		$\mathrm{C}(10)$	2．728（3）				
		H（1A）	－．009（2）				
		H（3A）	－． 009 （2）				
		H（5A）	－1．169（2）				
		$\mathrm{H}(5 \mathrm{~B})$	．371（2）				
		$\mathrm{H}(6 \mathrm{~A})$	．173（2）				
N （1）				$-.9400$	－． 2745	－． 2027	－6．4845
C（2）	$-.084(2)$						
$\mathrm{N}(3)$	．096（2）						
C（4）	．012（2）						
C（5）	－．258（2）						
C（6）	．32002）						
		O（7）	－．233（2）				
		O（8）	．118（2）				
		C（9）	1．822（2）				
		$\mathrm{C}(10)$	2．420（3）				

Fig. 2. A molecular scheme of the envelope conformation of 6-ethyl-5,6-dihydrouracil.

Fig. 3. The unit cell packing diagram of molecules. The hydrogen bonds have been designated with thin lines.

The resulting angle between two planes (the plane through five atoms and the triangular plane through $N(1), C(5)$ and $C(6)$ atoms) appeared to be of 139.7°, indicating that the apex $C(6)$ atom took an axial position rather than equatorial, and seemed to be exhibited an envelope conformation as shown in Fig. 2. Consequently, the orientations of the $C(9)$ and $H(6 a)$ atoms are axial, upwards and downwards with a tetrahedral geometry with respect to the $\mathrm{C}(6)$ atom as shown in Table 5, and of two hydrogen atoms of the $C(5)$, one $\mathrm{H}(5 \mathrm{~A})$ atom took an axial position with the deviation of $-1.169(2) \AA$, the other $H(5 B)$ atom equatorial with the deviation of $0.371(2) \AA$. Thus, the axial position of the ethyl group connected to the $\mathrm{C}(6)$ atom is considered to be reduced its steric strain.

The molecules have two intermolecular hydro-gen-bondings, $\mathrm{N}-\mathrm{H}-\mathrm{-}$. One $\mathrm{N}(1)$ links the $\mathrm{O}(7)$
$(x, 0.5-y,-0.5+z)$ by the distance of $2.899(2) \AA$ and the other $\mathrm{N}(3)$ does the $\mathrm{O}(7)(x, 0.5-y, 0.5+z)$ of $2.872(2) \AA$, respectively. These bondings are nearly parallel to the 100 plane as shown in Fig. 3 , and the hydrouracil rings are stacked along the 010 and 020 planes with the shortest distance of $3.187 \AA$ between the $C(4)$ and $O(8)(-x,-y, 1-z)$ atoms in molecules. The axial orientation of the ethyl group considered as the result of the van der Waals contacts holding the molecules together.

The X -ray results above mentioned prove more detailed structure of compound rather than in use of insufficient IR and NMR data, already reported by the conformational analysis of 5,6-dihydrouracils. ${ }^{7}$

Acknowledgement. This work was supported by research grant of Hankuk University of Foreign Studies. The author thanks Dr. Gene B. Carpenter, Department of Chemistry, Brown University, USA, for the use of facilities of data collection.

REFERENCES

1. Zee-Cheng, K. Y.; Robins, R. K.; Cheng, C. C. J. Org. Chem. 1961, 26, 1877.
2. Hannon, S. J.; Kundu, W. G.; Hertzberg, R. P.; Bhatt, R. S.; Heidelberger, C. Tetrahedron Lett. 1980, 1105.
3. Elad, D.; Rosenthal, I. J. Chem. Soc.. Chem. Commun. 1968, 879.
4. Kondo, Y.; Witkop, B. J. Am. Chem. Soc. 1969, 91, 5264.
5. Katritzky, A. R.; Nesbit, M. R.; Kurtev, B. J.; Lyapova, M.; Pojarlieff, I. G. Tetrahedron 1969, 25, 3807.
6. Rouillier, P.; Delmau, J.; Duplan, J.; Nofre, C. Tetrahedron Lett. 1966, 4189.
7. Lee, C. K.; Shim, J. Y. Bull. Korean Chem. Soc. 1991. 12, 343.
8. (a) Sheldrick, G. M. SHELXS-86: program for crystal structure determination; University of Cambridge: England, 1986. (b) Sheldrick, G. M. SHE-LXL-93: program for the refinement of crystal structure; University of Gottingen: Germany, 1993.
9. International Table for X-ray Crystallography; Kynoch Press: Birminghem, 1974; Vol. IV.

10．Cousson，A．；Proust，J．；Bachet，B．；Kokel，B．；Hu－ bert－Habart，M．Acta Cyyst．1992，C48，76～78．
11．Low，J．N．；Howie，R．A．；Hueso－Urena，F．；Mo－ reno－Carretero，M．N．Acta Cyyst． 1992 C48． 145～147．
12．Botta，M．；Fabrizi，G．et al．Acta Cryst．1992，C48，
$81 \sim 83$.
13．Gallucci，J．；Mathur，N．；Schechter，H．Acta Cryst． 1992．C48，477～480．
14．Tari．L．W．；Secco，A．S．Acta Cyrst． 1992 C48， 905～907
15．Belaj，F．Acta Cryst． 1992 C48，1088～1090．

