• Title/Summary/Keyword: ${\alpha}$-helical peptide

Search Result 53, Processing Time 0.022 seconds

Expression and Purification of a Cathelicidin-Derived Antimicrobial Peptide, CRAMP

  • Park Eu-Jin;Chae Young-Kee;Lee Jee-Young;Lee Byoung-Jae;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1429-1433
    • /
    • 2006
  • Application of recombinant protein production and particularly their isotopic enrichment has stimulated development of a range of novel multidimensional heteronuclear NMR techniques. Peptides in most cases are amenable to assignment and structure determination without the need for isotopic labeling. However, there are many cases where the availability of $^{15}N$ and/or $^{13}C$ labeled peptides is useful to study the structure of peptides with more than 30 residues and the interaction between peptides and membrane. CRAMP (Cathelicidin-Related AntiMicrobial Peptide) was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. CRAMP was successfully expressed as a GST-fused form in E. coli and purified using affinity chromatography and reverse-phase chromatography. The yield of the CRAMP was 1.5 mg/l 1. According to CD spectra, CRAMP adopted ${\alpha}$-helical conformation in membrane-mimetic environments. Isotope labeling of CRAMP is expected to make it possible to study the structure and dynamic properties of CRAMP in various membrane systems.

9-Meric Peptide Analogs of Defensin-like Antimicrobial Peptide Coprisin with Potent Antibacterial Activities with Bacterial Sell Selectivites

  • Shin, Areum;Lee, Eunjung;Kim, Jin-Kyoung;Bang, Jeong-Kyu;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2809-2812
    • /
    • 2014
  • The 43-residue defensin-like peptide coprisin, which is isolated from dung bettle, Copris tripartitus, is a potent antimicrobial peptide. In our previous work, we determined the tertiary structure of coprisin and found that alpha helical region of coprisin from residue 19 to residue 30 is important for its antimicrobial activities. Here, we designed cop12mer and cop9mer analogs of coprisin based on the tertiary structure of coprisin. To investigate the relationship between hydrophobicity and antimicrobial activities and develop the potent peptide antibiotics, we designed cop9mer-1 with substitution of $His^2$ with Trp in cop9mer. The results showed that cop9mer-1 has higher toxicities as well as improved antimicrobial activities compared to cop9mer. In order to reduce the toxicity of cop9mer-1, we designed cop9mer-2 and cop9mer-3 with substitution of $Cys^3$ with Lys or Ser. Substitution of $Cys^3$ with these hydrophilic amino acids results in lower cytotoxicities compared to cop9mer-1. Cop9mer-2 with substitution of $Cys^3$ with Lys in Cop9mer-1 showed high antibacterial activities against drug resistant bacteria without cytotoxicity. Antibiotic action of cop9mer-1 analog appears to involve permeabilization of the bacterial cell membrane while cop9mer-2 and cop9mer-3 may have different mechanism of action. These results imply that that optimum balance in hydrophobicity and hydrophilicity in these 9-meric peptides plays key roles in their antimicrobial activities as well as cytotoxicities.

Structure-Antifungal Activity Relationships of Cecropin A-Magainin 2 and Cecropin A-Melittin Hybrid Peptides on Pathogenic Fungal Cells

  • Lee, Dong-Gun;Jin, Zhe-Zhu;Shin, Song-Yub;Kang, Joo-Hyun;Hahm, Kyung-Soo;Kim, Kil-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.595-600
    • /
    • 1998
  • In order to investigate a relationship of the structure-antifungal and hemolytic activities between cecropin A(1-8)-magainin 2(1-12) and cecropin A(1-8)-melittin(1-12) hybrid peptides, several analogues with amino acid substitution at positions 10 (Ile) and 16 (Ser) were designed and synthesized. The increase of the hydrophobicity by substituting with Leu, Phe, and Trp at position 16 in cecropin A(1-8)-magainin 2(1-12) did not have a significant effect on antifungal activity but caused a remarkable increase in hemolytic activity. These results indicate that the hydrophobic property at position 16 of cecropin A(1-8)-magainin 2(1-12) is more correlated to hemolytic activity than to antifungal activity. Replacement with Pro at position 10 of cecropin A(1-8)- magainin 2(1-12) and cecropin A(1-8)-melittin (1-12) caused a remarkable decrease in a-helical contents in the 50% TFE solution and induced a reduction in lytic activity against Aspergillus flavus, and Aspergillus fumigatus. These results demonstrate that flexibility at the central hinge region is essential for lytic activity against fungal cells and $\alpha$-helicity of the peptides.

  • PDF

Structural Properties of Fibril-forming Segments of α-Synuclein

  • Yoon, Je-Seong;Park, Joon-Ho;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seo-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.623-629
    • /
    • 2009
  • We have performed replica-exchange molecular dynamics simulations on 41 residue peptide mainly composed of NAC (non A$\beta$ component) sequence in $\alpha$-Synuclein. To investigate conformational characteristics of intrinsically unstructured peptides, we carried out structural analysis on the ‘representative structures’ for ensemble of structures occurring at different temperatures. The secondary structure profile obtained from our simulations suggests that the NAC region of $\alpha$-synuclein can be divided into roughly three helical-like segments. It is found that the overall helix-turn-helix like topology is conserved even though the conformational fluctuations grow as the temperature increases. The coordinate-based and the distance-based representative structures exhibit noticeable differences at higher temperatures while they are similar at lower temperatures. It is found that structural variations for the coordinate-based representative structures are much larger, suggesting that distance-based representative structures provide more reliable information concerning characteristic features of intrinsically unstructured proteins. The present analysis also indicates that the conformational features of representative structures at high temperatures might be related to those in membrane or low pH environment.

Structure-Activity Relationship of the N-terminal Helix Analog of Papiliocin, PapN

  • Jeon, Dasom;Jeong, Min-Cheol;Kim, Jin-Kyoung;Jeong, Ki-Woong;Ko, Yoon-Joo;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2015
  • Papiliocin, from the swallowtail butterfly, Papilio xuthus, shows high bacterial cell selectivity against Gram-negative bacteria. Recently, we designed a 22mer analog with N-terminal helix from $Lys^3$ to $Ala^{22}$, PapN. It shows outstanding antimicrobial activity against Gram-negative bacteria with low toxicity against mammalian cells. In this study, we determined the 3-D structure of PapN in 300 mM DPC micelle using NMR spectroscopy and investigated the interactions between PapN and DPC micelles. The results showed that PapN has an amphipathic ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$. STD-NMR and DOSY experiment showed that this helix is important in binding to the bacterial cell membrane. Furthermore, we tested antibacterial activities of PapN in the presence of salt for therapeutic application. PapN was calcium- and magnesium-resistant in a physiological condition, especially against Gram-negative bacteria, implying that it can be a potent candidate as peptide antibiotics.

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity

  • Lee, June-Young;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1192-1195
    • /
    • 2010
  • To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.

HpaXm from Xanthomonas citri subsp. malvacearum is a Novel Harpin with Two Heptads for Hypersensitive Response

  • Miao, Wei-Guo;Song, Cong-Feng;Wang, Yu;Wang, Jin-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.54-62
    • /
    • 2010
  • A novel harpin-like protein, HpaXm, was described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum. The hpaXm was found to be localized between hrp2 and hrcC. A phylogenetic analysis of the complete amino acid sequence or solely the 13 highly conserved residues $H_2N$-SEKQLDQLLTQLI-COOH in the N-terminal $\alpha$-helix indicates that HpaXm is evolutionarily closer to HpaGXag and HpaXac than to Hpa1Xoo and Hpa1Xoc. A synthesized peptide containing two heptads, 39-LDQLLTQLIMALLQ-52, from the N-terminal a-helical region of HpaXm displayed comparable activity in inducing a hypersensitive response, but two other synthesized derivatives, $HpaXm{\Delta}T44C$ and $HpaXm{\Delta}M48Q$, showed reduced HR-triggering activity. The data from a GST trap test revealed that HpaXm was released into the extracellular medium, hpaXm mutant deficient for the leader peptide (1-MNSLNTQIGANSSFL-15) was unable to be secreted outside cells but still induced HR in tobacco leaves.

Solution Structure of the D/E Helix Linker of Skeletal Troponin-C: As Studied by Circular Dichroism and Two-Dimensional NMR Spectroscopy

  • 이원태;G. M. Anatharamaiah;Herbert C. Cheung;N. Rama Krishna
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 1998
  • We have synthesized a 17-residue peptide with the amino acid sequence RQMKEDAKGKSEEELAD corresponding to residues 84-100 of chicken skeletal troponin C. This stretch of the protein sequence is in the middle one-third of the 32-residue 9-turn α-helix that connects the two globular domains of the dumbell-shaped molecule and includes the D/E linker helix. We describe here the solution conformation of the helix linker as studied by circular dichroism (CD) and two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. The NOE connectivities together with the vicinal $^3J_{N{\alpha}}$ coupling constants suggest that the peptide exists in a fast conformational equilibrium among several secondary structure: a nascent helix near the N-terminus, a helix, and a substational population of extended and random coil forms. In addition, two interresidue α-α NOEs are observed suggesting a bent structure with a bend that includes the single glycine in position 92. These results are consistent with the ideas that in neutral solution the D/E linker region of the central helix in troponin C can adopt a helical conformation and the central helix may have a segmental flexibility around Gly 92.

Anticancer activity of CopA3 dimer peptide in human gastric cancer cells

  • Lee, Joon Ha;Kim, In-Woo;Kim, Sang-Hee;Yun, Eun-Young;Nam, Sung-Hee;Ahn, Mi-Young;Kang, Dong-Chul;Hwang, Jae Sam
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.324-329
    • /
    • 2015
  • CopA3 is a homodimeric ${\alpha}$-helical peptide derived from coprisin which is a defensin-like antimicrobial peptide that was identified from the dung beetle, Copris tripartitus. CopA3 has been reported to have anticancer activity against leukemia cancer cells. In the present study, we investigated the anticancer activity of CopA3 in human gastric cancer cells. CopA3 reduced cell viability and it was cytotoxic to gastric cancer cells in the MTS and LDH release assay, respectively. CopA3 was shown to induce necrotic cell death of the gastric cancer cells by flow cytometric analysis and acridine orange/ethidium bromide staining. CopA3-induced cell death was mediated by specific interactions with phosphatidylserine, a membrane component of cancer cells. Taken together, these data indicated that CopA3 mainly caused necrosis of gastric cancer cells, probably through interactions with phosphatidylserine, which suggests the potential utility of CopA3 as a cancer therapeutic. [BMB Reports 2015; 48(6): 324-329]

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.