Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.9.2809

9-Meric Peptide Analogs of Defensin-like Antimicrobial Peptide Coprisin with Potent Antibacterial Activities with Bacterial Sell Selectivites  

Shin, Areum (Department of Bioscience and Biotechnology, Konkuk University)
Lee, Eunjung (Department of Bioscience and Biotechnology, Konkuk University)
Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Konkuk University)
Bang, Jeong-Kyu (Division of Magnetic Resonance, Korea Basic Science Institute)
Kim, Yangmee (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Abstract
The 43-residue defensin-like peptide coprisin, which is isolated from dung bettle, Copris tripartitus, is a potent antimicrobial peptide. In our previous work, we determined the tertiary structure of coprisin and found that alpha helical region of coprisin from residue 19 to residue 30 is important for its antimicrobial activities. Here, we designed cop12mer and cop9mer analogs of coprisin based on the tertiary structure of coprisin. To investigate the relationship between hydrophobicity and antimicrobial activities and develop the potent peptide antibiotics, we designed cop9mer-1 with substitution of $His^2$ with Trp in cop9mer. The results showed that cop9mer-1 has higher toxicities as well as improved antimicrobial activities compared to cop9mer. In order to reduce the toxicity of cop9mer-1, we designed cop9mer-2 and cop9mer-3 with substitution of $Cys^3$ with Lys or Ser. Substitution of $Cys^3$ with these hydrophilic amino acids results in lower cytotoxicities compared to cop9mer-1. Cop9mer-2 with substitution of $Cys^3$ with Lys in Cop9mer-1 showed high antibacterial activities against drug resistant bacteria without cytotoxicity. Antibiotic action of cop9mer-1 analog appears to involve permeabilization of the bacterial cell membrane while cop9mer-2 and cop9mer-3 may have different mechanism of action. These results imply that that optimum balance in hydrophobicity and hydrophilicity in these 9-meric peptides plays key roles in their antimicrobial activities as well as cytotoxicities.
Keywords
Coprisin; Antimicrobial peptide; Antibacterial activity; Cytotoxicity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hancock, R. E.; Lehrer, R. Trends Biotechnol. 1998, 16, 82-88.   DOI   ScienceOn
2 Zasloff, M. Nature 2002, 415, 389-395.   DOI   ScienceOn
3 Yeaman, M. R.; Yount, N. Y. Pharmacol. Rev. 2003, 55, 27-55.   DOI   ScienceOn
4 Nguyen, L. T.; Haney, E. F.; Vogel, H. J. Trends Biotechnol. 2011, 29, 464-472.   DOI   ScienceOn
5 Selsted, M. E.; Szklarek, D.; Lehrer, R. I. Infect. Immun. 1984, 45, 150-154.
6 Selsted, M. E.; Szklarek, D.; Ganz, T.; Lehrer, R. I. Infect. Immun. 1985, 49, 202-206.
7 Wong, J. H.; Xia, L.; Ng, T. B. Curr. Protein Pept. Sci. 2007, 8, 446-459.   DOI
8 Chen, H.; Xu, Z.; Peng, L.; Fang, X.; Xin, X.; Xu, Z.; Chen, P. Peptides 2006, 27, 931-940.   DOI   ScienceOn
9 Schneider, J. J.; Unholzer, A.; Schaller, M.; Schafer-Korting, M.; Korting, H. C. J. Mol. Med. 2005, 83, 587-595.   DOI
10 Landon, C.; Sodano, P.; Hetru, C.; Hoffmann, J.; Ptak, M. Protein. Sci. 1997, 6, 1878-1884.   DOI   ScienceOn
11 Nygaard, M. K.; Andersen, A. S.; Kristensen, H. H.; Krogfelt, K. A.; Pojan, P.; Wimmer, R. J. Biomol. NMR 2012, 52, 277-282.   DOI   ScienceOn
12 Hwang, J. S.; Kang, B. R.; Kim, S. R.; Yun, E. Y.; Park, K. H.; Jeon, J. P.; Nam, S. H.; Suh, H. W.; Hong, M. Y.; Kim, I. Int. J. Indust. Entomol. 2008, 17, 131-135.
13 Shin, S.; Kim, J. K.; Lee, J. Y.; Jung, K. W.; Hwang, J. S.; Lee, J.; Lee, D. G.; Kim, I.; Shin, S. Y.; Kim, Y. J. Pept. Sci. 2009, 15, 559-568.   DOI   ScienceOn
14 Lee, E.; Kim, J. K.; Shin, S.; Jeong, K. W.; Shin, A.; Lee, J.; Lee, D. G.; Hwang, J. S.; Kim. Y. Biochim. Biophys. Acta 2013, 1828, 271-283.   DOI   ScienceOn
15 Lee, J.; Hwang, J. S.; Hwang, I. S.; Cho, J.; Lee, E.; Kim, Y.; Lee, D. G. Free Radic. Biol. Med. 2012, 52, 2302-2311.   DOI   ScienceOn
16 Hwang, J. S.; Lee, J.; Kim, Y. J.; Bang, H. S.; Yun, E. Y.; Kim, S. R.; Suh, H. J.; Kang, B. R.; Nam, S. H.; Jeong, J. P.; Kim, I.; Lee, D. G. Int. J. Pept. 2009, 2009, 1-5.
17 Jeong, K. W.; Shin, S.; Kim, J. K.; Kim, Y. Bull. Korean Chem. Soc. 2011, 32, 2577-2583.   DOI
18 Lee, E.; Jeong, K. W.; Lee, J.; Shin, A.; Kim, J. K.; Lee, J.; Lee, D. G.; Kim, Y. BMB Reports 2013, 46, 282-287.   DOI   ScienceOn
19 Jeong, K. W.; Shin, S.; Kim, J. K.; Kim, Y. Bull. Korean Chem. Soc. 2009, 30, 1839-1844.   DOI   ScienceOn
20 Hopp, T. P.; Woods, K. R. Proc. Natl. Acad. Sci. 1981, 78, 3824-3828.   DOI   ScienceOn
21 Kim, J. K.; Lee, E.; Shin, S.; Jeong, K. W.; Lee, J. Y.; Bae, S. Y.; Kim, S. H.; Lee, J. Y.; Kim, S. R.; Hwang, J. S.; Kim, Y. J. Biol. Chem. 2011, 286, 41296-41311.   DOI
22 Hancock, R. E.; Sahl, H. G. Nat. Biotechnol. 2006, 24, 1551-1557.   DOI   ScienceOn
23 Yamada, K.; Natori, S. Biochem. J. 1994, 3, 623-628.
24 Lee, E.; Kim, J. K.; Shin, S.; Jeong, K. W.; Lee, J.; Lee, D. G.; Hwang, J. S.; Kim, Y. J. Pept. Sci. 2011, 17, 675-682.   DOI   ScienceOn