Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05027

HpaXm from Xanthomonas citri subsp. malvacearum is a Novel Harpin with Two Heptads for Hypersensitive Response  

Miao, Wei-Guo (Department of Plant Pathology, Nanjing Agricultural University)
Song, Cong-Feng (Department of Plant Pathology, Nanjing Agricultural University)
Wang, Yu (Department of Plant Pathology, Nanjing Agricultural University)
Wang, Jin-Sheng (Department of Plant Pathology, Nanjing Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 54-62 More about this Journal
Abstract
A novel harpin-like protein, HpaXm, was described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum. The hpaXm was found to be localized between hrp2 and hrcC. A phylogenetic analysis of the complete amino acid sequence or solely the 13 highly conserved residues $H_2N$-SEKQLDQLLTQLI-COOH in the N-terminal $\alpha$-helix indicates that HpaXm is evolutionarily closer to HpaGXag and HpaXac than to Hpa1Xoo and Hpa1Xoc. A synthesized peptide containing two heptads, 39-LDQLLTQLIMALLQ-52, from the N-terminal a-helical region of HpaXm displayed comparable activity in inducing a hypersensitive response, but two other synthesized derivatives, $HpaXm{\Delta}T44C$ and $HpaXm{\Delta}M48Q$, showed reduced HR-triggering activity. The data from a GST trap test revealed that HpaXm was released into the extracellular medium, hpaXm mutant deficient for the leader peptide (1-MNSLNTQIGANSSFL-15) was unable to be secreted outside cells but still induced HR in tobacco leaves.
Keywords
Xanthomonas citri subsp. malvacearum; HpaXm; hypersensitive response; secondary structure; two heptads;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Peng, J. L., Z. L. Bao, H. Y. Ren, J. S. Wang, and H. S. Dong. 2004. Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94: 1048-1055.   DOI   ScienceOn
2 Levy, R., M. Wiedmann, and G. Kreibich. 2001. In vitro binding of ribosomes to the beta subunit of the Sec61p protein translocation complex. J. Biol. Chem. 276: 2340-2346.   DOI
3 Spyropoulos, I. C., T. D. Liakopoulos, P. G. Bagos, and S. J. Hamodrakas. 2004. TMRPres2D: High quality visual representation of transmembrane protein models. Bioinformatics 20: 3258-3260.   DOI   ScienceOn
4 Schaad, N. W., E. Postnikova, G. Lacy, A. Sechler, I. Agarkova, P. E. Stromberg, V. K. Stromberg, and A. K. Vidaver. 2006. Emended classification of xanthomonad pathogens on citrus. Syst. Appl. Microbiol. 29: 690-695.   DOI   ScienceOn
5 Wei, Z. M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S. Y. He, A. Collmer, and S. V. Beer. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88.   DOI
6 Ying, G., W. Wu, and C. Z. He. 2002. Cloning of Xanthomonas campestris pv. campestris pathogenicity-related gene sequences by TAIL-PCR. Sheng Wu Gong Cheng Xue Bao 18: 182-186.
7 Emanuelsson, O., S. Brunak, G. von Heijne, and H. Nielsen. 2007. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat. Protoc. 2: 953-971.   DOI   ScienceOn
8 Adam, A. L., S. Pike, M. E. Hoyos, J. M. Stone, J. C. Walker, and A. Novacky. 1997. Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol. 115: 853-861.
9 Alfano, J. R. and A. Collmer. 2004. Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42: 385-414.   DOI   ScienceOn
10 Cornelis, G. R. and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735-774.   DOI   ScienceOn
11 Kim, J. F. and S. V. Beer. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180: 5203-5210.
12 Kim, J. G., B. K. Park, C. H. Yoo, E. Jeon, J. Oh, and I. Hwang. 2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 185: 3155-3166.   DOI   ScienceOn
13 Noel, L., F. Thieme, D. Nennstiel, and U. Bonas. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184: 1340-1348.   DOI   ScienceOn
14 Wang, X. Y., C. F. Song, W. G. Miao, Z. L. Ji, X. Wang, Y. Zhang, 2008. Mutations in the N-terminal coding region of the harpin protein Hpa1 from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl. Microbiol. Biotechnol. 81: 359-369.   DOI   ScienceOn
15 Strobel, N. E., C. Ji, S. Gopalan, J. A. Kuc, and S. Y. He. 1996. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J. 9: 431-439.   DOI
16 Tampakaki, A. P. and N. J. Panopoulos. 2000. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Mol. Plant Microbe Interact. 13: 1366-1374.   DOI   ScienceOn
17 Lee, J., D. F. Klessig, and T. Nurnberger. 2001. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13: 1079-1093.
18 Dilks, K., R. W. Rose, E. Hartmann, and M. Pohlschroder. 2003. Prokaryotic utilization of the twin-arginine translocation pathway: A genomic survey. J Bacteriol. 185: 1478-1483.   DOI   ScienceOn
19 Gophna, U., E. Z. Ron, and D. Graur. 2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontaltransfer events. Gene 312: 151-163.   DOI
20 Kay, S., S. Hahn, E. Marois, G. Hause, and U. Bonas. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651.   DOI
21 Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252: 1162-1164.   DOI
22 Oh, C. S. and S. V. Beer. 2007. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol. 145: 426-436.   DOI   ScienceOn
23 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408.   DOI   ScienceOn
24 Bogdanove, A. J., S. V. Beer, U. Bonas, C. A. Boucher, A. Collmer, D. L. Coplin, et al. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20: 681-683.   DOI   ScienceOn
25 Guermeur, Y. 1997. Combinaison de classifieurs statistiques, Application a la prediction de structure secondaire des proteines, PhD thesis, Universite de Paris 06.
26 Krogh, A., B. Larsson, G. von Heijne, and E. L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305: 567-580.   DOI   ScienceOn
27 Arlat, M., F. Van Gijsegem, J. C. Huet, J. C. Pernollet, and C. A. Boucher. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553.
28 Noel, L., F. Thieme, J. Gabler, D. Buttner, and U. Bonas. 2003. XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 185: 7092-7102.   DOI   ScienceOn
29 Kim, J. G., E. Jeon, J. Oh, J. S. Moon, and I. Hwang. 2004. Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J. Bacteriol. 186: 6239-6247.   DOI   ScienceOn
30 Natale, P., T. Bruser, and A. J. Driessen. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane - distinct translocases and mechanisms. Biochim. Biophys. Acta 1778: 1735-1756.   DOI   ScienceOn
31 Li, C. M., M. Haapalainen, J. Lee, T. Nurnberger, M. Romantschuk, and S. Taira. 2005. Harpin of Pseudomonas syringae pv. phaseolicola harbors a protein binding site. Mol. Plant Microbe Interact. 18: 60-66.   DOI   ScienceOn
32 Galan, J. E. and H. Wolf-Watz. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567-573.   DOI   ScienceOn
33 Liu, Y. G. and N. Huang. 1998. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR Pl. Plant Mol. Biol. Rep. 16: 175-181.   DOI   ScienceOn
34 Li, P., X. Lu, M. Shao, J. Long, and J. Wang. 2004. Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci. China C Life Sci. 47: 461-469.   DOI   ScienceOn
35 Gurlebeck, D., F. Thieme, and U. Bonas. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163: 233-255.   DOI   ScienceOn
36 He, S. Y., H. C. Huang, and A. Collmer. 1993. Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.   DOI   ScienceOn
37 Wooldridge, K. 2009. Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press, Norfolk