Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04041

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity  

Lee, June-Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Lee, Dong-Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.8, 2010 , pp. 1192-1195 More about this Journal
Abstract
To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.
Keywords
Antifungal peptide; hydrophobicity; pleurocidin; truncated analog;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Sheppard, R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552.   DOI   ScienceOn
2 White, T. C., K. A. Marr, and R. A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382-402.
3 Niimi, M., N. A. Firth, and R. D. Cannon. 2010. Antifungal drug resistance of oral fungi. Odontology 98: 15-25.   DOI   ScienceOn
4 Lee, J. and D. G. Lee. 2008. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp. Mol. Med. 40: 370-376.   DOI   ScienceOn
5 Perea, S., J. L. López-Ribot, W. R. Kirkpatrick, R. K. McAtee, R. A. Santillán, M. Martínez, D. Calabrese, D. Sanglard, and T. F. Patterson. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676-2684.   DOI   ScienceOn
6 Sung, W. S., I. S. Lee, and D. G. Lee. 2007. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17: 1797-1804.   과학기술학회마을
7 Urban, E., E. Nagy, T. Pál, A. Sonnevend, and J. M. Conlon. 2007. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int. J. Antimicrob. Agents 29: 317-321.   DOI   ScienceOn
8 Merrifield, B. 1986. Solid phase synthesis. Science 232: 341-347.   DOI
9 Lee, J., H. J. Hong, J. K. Kim, J. S. Hwang, Y. Kim, and D. G. Lee. 2009. A novel antifungal analog peptide derived from protaetiamycine. Mol. Cells 28: 473-477.   DOI   ScienceOn
10 Lee, M. K., H. K. Kim, T. Y. Lee, K. S. Hahm, and K. L. Kim. 2006. Structure-activity relationships of anti-HIV-1 peptides with disulfide linkage between D- and L-cysteine at positions i and i+3, respectively, derived from HIV-1 gp41 C-peptide. Exp. Mol. Med. 38: 18-26.   DOI
11 Dathe, M. and T. Wieprecht. 1999. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta Biomembr. 1462: 71-87.   DOI   ScienceOn
12 Hartsel, S. and J. Bolard. 1996. Amphotericin B: New life for an old drug. Trends Pharmacol. Sci. 17: 445-449.   DOI   ScienceOn
13 Kim, K. J., W. S. Sung, S. K. Moon, J. S. Choi, J. G. Kim, and D. G. Lee. 2008. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 18: 1482-1484.   과학기술학회마을
14 Kontoyiannis, D. P. and R. E. Lewis. 2002. Antifungal drug resistance of pathogenic fungi. Lancet 359: 1135-1144.   DOI   ScienceOn
15 Amichai, B. and M. H. Grunwald. 1998. Adverse drug reactions of the new oral antifungal agents - terbinafine, fluconazole, and itraconazole. Int. J. Dermatol. 37: 410-415.   DOI   ScienceOn
16 Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013.   DOI   ScienceOn
17 Albertson, G. D., M. Niimi, R. D. Cannon, and H. F. Jenkinson. 1996. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob. Agents Chemother. 40: 2835-2841.
18 Habermann, E. 1972. Bee and wasp venoms. Science 177: 314-322.   DOI