• Title/Summary/Keyword: ${\alpha}$-helical peptide

Search Result 53, Processing Time 0.024 seconds

Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.759-767
    • /
    • 2017
  • Lactophoricin (LPcin), which is a part of proteose peptone isolated from bovine milk, is a cationic amphipathic ${\alpha}-helical$ antimicrobial peptide. Its truncated variants and mutated analogs were designed and their antimicrobial activities were evaluated by using various assays, like broth dilution methods and disk diffusion methods as well as hemolysis assay. Three analogs, LPcin-C8 (LPcin-YK1), LPcin-T2&6W (LPcin-YK2), and LPcin-T2&6W-C8 (LPcin-YK3), which showed better antibiotic activities than LPcin, were selected. Their secondary structures were also characterized by using CD spectropolarimetry. These three analogs of LPcin could be used as an alternative source of powerful antibacterial agents.

Molecular Cloning and Structural Analysis of the Antibacterial Gene from the Common Cutworm, Spodoptera litura

  • Nam, Duk-Hwa;Tae, Gun-Sik
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.536-541
    • /
    • 1998
  • The cDNA clone encoding the antibacterial peptide (SL-1) was isolated from the fat body of the common cutworm, Spodoptera litura, immunized with E. coli K12. The primary structure analysis revealed that its deduced amino acid sequence showed the characteristics of the cecropin family antibacterial peptides and that the amino acid residues highly conserved in the antibacterial peptides from moths and flies were also conserved, implying that SL-1 was a cecropin-like, and especially cecropin B-like, peptide. The predicted secondary structure of the mature SL-1 consists of three domains: (i) an amphiphilic ${\alpha}$-helical domain (Ile-4 to Gly-18); (ii) the hinge region (Gly-23 and Pro-24); and (iii) a hydrophobic domain (Ala-25 to IIe-38).

  • PDF

Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer

  • Lorello, Kim M.;Kreutzberger, Alex J.;King, Allison M.;Lee, Hee-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.783-792
    • /
    • 2014
  • The binding interaction between a hemolytic peptide ${\delta}$-lysin and a zwitterionic lipid bilayer POPC was investigated through a series of molecular dynamics (MD) simulations. ${\delta}$-Lysin is a 26-residue, amphipathic, ${\alpha}$-helical peptide toxin secreted by Staphylococcus aureus. Unlike typical antimicrobial peptides, ${\delta}$-lysin has no net charge and it is often found in aggregated forms in solution even at low concentration. Our study showed that only the monomer, not dimer, inserts into the bilayer interior. The monomer is preferentially attracted toward the membrane with its hydrophilic side facing the bilayer surface. However, peptide insertion requires the opposite orientation where the hydrophobic side of peptide points toward the membrane interior. Such orientation allows the charged residues, Lys and Asp, to have stable salt bridges with the lipid head-group while the hydrophobic residues are buried deeper in the hydrophobic lipid interior. Our simulations suggest that breaking these salt bridges is the key step for the monomer to be fully inserted into the center of lipid bilayer and, possibly, to translocate across the membrane.

The Algicidal Effect of Antimicrobial Peptide, Mastoparan B (항균성 펩타이드인 mastoparan B의 살조효과)

  • Seo, Jeong-Gil;Kim, Chan-Hui;Bae, Yun-Jeong;Mun, Ho-Seong;Kim, Geun-Yong;Park, Hui-Yeon;Yun, Ho-Dong;Kim, Chang-Hun;Byeon, Dae-Seok;Hong, Yong-Gi;Park, Nam-Gyu
    • Journal of fish pathology
    • /
    • v.16 no.3
    • /
    • pp.193-201
    • /
    • 2003
  • Mastoparan B (MPB), an antimicrobial cationic peptide isolated from the venom of the hornet Vespa basalis, is a basic amphipathic α-helical peptide composed of fourteen amino acid residues. In this study, we have investigated the algicidal effect of MPB against harmful algae blooms (HABs) casative Alexandrium tamarense, Chattonella marina, Cochlodinium polykrikoides and Gymnodinium catenatum. The algicidal effect of MPB showed in the concentration of 31.3 $\mu{g}$/mL to 500 $\mu{g}$/mL against 4 HAB species and observed cell lysis or cell ecdysis by microscopy. MPB reacted more sensitive to C. marina and C. polykrikoides than A. tamarense and G. catenatum. The algicidal study of MPB against HABs will provides much insight into development of new algicidal substances.

Studies of Tertiary Structures of Mastoparan B and Alanine Analogues by NMR Spectroscopy

  • Kyeunghee Yu;Kang, Shin-Won;Park, Nam-Gyu;Kim, Yangmee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.33-33
    • /
    • 1999
  • Mastoparan B (MP-B), an antimicrobial cationic tetradecapeptide amide isolated from the venom of the hornet Vespa basalis, is an amphiphilic ${\alpha}$-helical peptide. In order to study the relationship between the structure and biological activity, we used the three analogues by replacing amino acids with alanine (4LysAla: 4MP-B, 12-LYsAla: 12MP-B, 9TrpAla: 9Mp-B).(omitted)

  • PDF

De Novo Design and Their Antimicrobial Activity of Stapled Amphipathic Helices of Heptapeptides

  • Dinh, Thuy T.T.;Kim, Do-Hee;Lee, Bong-Jin;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3632-3636
    • /
    • 2014
  • In this study we designed and synthesized several heptapeptides that are enforced to form an amphipathic helix using all-hydrocarbon stapling system and evaluated their antimicrobial and hemolytic activities. The antimicrobial activity showed clear structure-activity relationships, confirming the importance of helicity and amphipathicity. Some stapled heptapeptides displayed a moderate antimicrobial activity along with a low hemolytic activity. To our best knowledge, although not highly potent, these stapled peptides represent the shortest helical amphipathic antimicrobial peptides reported to date. The preliminary data obtained in this work would serve as a good starting point for further developing short analogs of amphipathic helical antimicrobial peptides.

Structural and Functional Characterization of CRAMP-18 Derived from a Cathelicidin-Related Antimicrobial Peptide CRAMP

  • Park, Kyong-Soo;Shin, Song-Yub;Hahm, Kyung-Soo;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1478-1484
    • /
    • 2003
  • CRAMP was identified from a cDNA clone derived from a mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptide. Tertiary structure of CRAMP in TFE/$H_2O$ (1 : 1, v/v) solution has been determined by NMR spectroscopy previously and consists of two amphipathic $\alpha-helices$ from Leu4 to Lys10 and from Gly16 to Leu33. These two helices are connected by a flexible region from Gly11 to Gly16. Analysis of series of fragments composed of various portion of CRAMP revealed that an 18-residue fragment with the sequence from Gly16 to Leu33 (CRAMP-18) was found to retain antibacterial activity without cytotoxicity. The effects of two Phe residues at positions 14 and 15 of CRAMP-18 on structure, antibacterial activity, and interaction with lipid membranes were investigated by $Phe^{14,15}$ ${\rightarrow}$ Ala substitution (CRAMP-18-A) in the present study. Substitution of Phe with Ala in CRAMP-18 caused a significant reduction on antibacterial and membrane-disrupting activities. Tertiary structures of CRAMP-18 in 50% TFE/$H_2O$ (1 : 1, v : v) solution shows amphipathic ${\alpha}$-helix, from $Glu^2{\;}to{\;}Leu^{18}$, while CRAMP-18-A has relatively short amphipathic ${\alpha}$-helix from $Leu^4{\;}to{\;}Ala^{15}$. These results suggest that the hydrophobic property of $Phe^{14}{\;}and{\;}Phe^15$ in CRAMP-18 is essential for its antibacterial activity, ${\alpha}$-helical structure, and interactions with phospholipid membranes.

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

  • Lee, Jaeho;Lee, Daeun;Choi, Hyemin;Kim, Ha Hyung;Kim, Ho;Hwang, Jae Sam;Lee, Dong Gun;Kim, Jae Il
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.625-630
    • /
    • 2014
  • Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.

Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action

  • Shin, Song Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3267-3274
    • /
    • 2014
  • In order to investigate the effects of the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu (the peptoid residue for Leu) in the hydrophobic face (positions 9 and 13) of amphipathic ${\alpha}$-helical non-cell-selective antimicrobial peptide $L_8K_9W_1$ on the structure, cell selectivity and mechanism of action, we synthesized a series of $L_8K_9W_1$ analogs with double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu in the hydrophobic face of $L_8K_9W_1$. In this study, we have confirmed that the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, or Nleu in the hydrophobic face of $L_8K_9W_1$ let to a great increase in the selectivity toward bacterial cells and a complete destruction of ${\alpha}$-helical structure. Interestingly, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu preferentially interacted with negatively charged phospholipids, but unlike $L_8K_9W_1$ and $L_8K_9W_1$-$\small{D}$-Leu, they did not disrupt the integrity of lipid bilayers and depolarize the bacterial cytoplasmic membrane. These results suggested that the mode of action of $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu involves the intracellular target other than the bacterial membrane. In particular, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu had powerful antimicrobial activity (MIC range, 1 to $4{\mu}M$) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Taken together, our results suggested that $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu with great cell selectivity may be promising candidates for novel therapeutic agents, complementing conventional antibiotic therapies to combat pathogenic microorganisms.

Effective α-Helix Stabilization via Hexenyl Propionate Cross-Link

  • Yoo, Jiyeon;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3627-3631
    • /
    • 2014
  • In this study we examined two ester-containing cross-links, hex-2-enyl acetate and hex-2-enyl propionate, as new cross-linking systems for helix stabilization of short peptides. We demonstrated that these hexenyl ester cross-links can be readily installed via a ruthenium-mediated ring-closing metathesis reaction of L-aspartic acid 4-allyl ester or L-glutamic acid 5-allyl ester at position i and (S)-2-(4'-pentenyl)alanine at position i+4 using second generation Hoveyda-Grubbs catalyst at $60^{\circ}C$. Between these two cross-links, we found that the hex-2-enyl propionate significantly stabilizes the ${\alpha}$-helical conformations of short model peptides. The helix-stabilizing effects of the hex-2-enyl propionate tether appear to be as powerful as Verdine's i,i+4 all-hydrocarbon stapling system, which is one of the most widely used and the most potent helix-stabilizing cross-linking systems. Furthermore, the hex-2-enyl propionate bridge is reasonably robust against non-enzymatic hydrolytic cleavage at a physiological pH. While extended studies for probing its chemical scopes and biological applications are needed, we believe that this new helix-stabilizing system could serve as a useful chemical tool for understanding protein folding and designing conformationally-constrained peptide drugs.