Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.11.3267

Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action  

Shin, Song Yub (Department of Cellular & Molecular Medicine, School of Medicine, Chosun University)
Publication Information
Abstract
In order to investigate the effects of the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu (the peptoid residue for Leu) in the hydrophobic face (positions 9 and 13) of amphipathic ${\alpha}$-helical non-cell-selective antimicrobial peptide $L_8K_9W_1$ on the structure, cell selectivity and mechanism of action, we synthesized a series of $L_8K_9W_1$ analogs with double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu in the hydrophobic face of $L_8K_9W_1$. In this study, we have confirmed that the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, or Nleu in the hydrophobic face of $L_8K_9W_1$ let to a great increase in the selectivity toward bacterial cells and a complete destruction of ${\alpha}$-helical structure. Interestingly, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu preferentially interacted with negatively charged phospholipids, but unlike $L_8K_9W_1$ and $L_8K_9W_1$-$\small{D}$-Leu, they did not disrupt the integrity of lipid bilayers and depolarize the bacterial cytoplasmic membrane. These results suggested that the mode of action of $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu involves the intracellular target other than the bacterial membrane. In particular, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu had powerful antimicrobial activity (MIC range, 1 to $4{\mu}M$) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Taken together, our results suggested that $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu with great cell selectivity may be promising candidates for novel therapeutic agents, complementing conventional antibiotic therapies to combat pathogenic microorganisms.
Keywords
Model antimicrobial peptide; Structure; Cell selectivity; Bacterial-killing mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andreu, D.; Merrifield, R. B.; Steiner, H.; Boman, H. G. Biochemistry 1985, 24, 1683.   DOI
2 Zasloff, M. Nature 2002, 415, 389.   DOI   ScienceOn
3 Hancock, R. E.; Scott, M. G. Proc. Natl. Acad. Sci. USA 2000, 97, 8856.   DOI   ScienceOn
4 Hancock, R. E.; Diamond, G. Trends Microbiol. 2000, 8, 402.   DOI   ScienceOn
5 Maloy, W. L.; Kari, U. P. Biopolymers 1995, 37, 105.   DOI   ScienceOn
6 Blondelle, S. E.; Simpkins, L. R.; Perez-Paya, E.; Houghten, R. A. Biochim. Biophys. Acta 1993, 1202, 331.   DOI   ScienceOn
7 Shai, Y. Biopolymers 2002, 66, 236.   DOI   ScienceOn
8 Papo, N.; Shai, Y. Peptides 2003, 24, 1693.   DOI   ScienceOn
9 Kang, S. J.; Won, H. S.; Choi, W. S.; Lee, B. J. J. Pept. Sci. 2009, 15, 583.   DOI   ScienceOn
10 Fernandez, D. I.; Sani, M. A.; Gehman, J. D.; Hahm, K. S.; Separovic, F. Eur. Biophys. J. 2011, 40, 471.   DOI
11 Wang, P.; Nan, Y. H.; Yang, S. T.; Kang, S. W.; Kim, Y.; Park, I. S.; Hahm, K. S.; Shin, S. Y. Peptides 2010, 31, 1251.   DOI   ScienceOn
12 Epand, R. F.; Lehrer, R. I.; Waring, A.; Wang, W.; Maget-Dana, R.; Lelievre, D.; Epand, R. M. Biopolymers 2003, 71, 2.   DOI   ScienceOn
13 Beven, L.; Castano, S.; Dufourcq, J.; Wieslander, A.; Wroblewski, H. Eur. J. Biochem. 2003, 270, 2207.   DOI   ScienceOn
14 Agawa,Y.; Lee, S.; Ono, S.; Aoyagi, H.; Ohno, M.; Taniguchi, T.; Anzai, K.; Kirino, Y. J. Biol. Chem. 1991, 266, 20218.
15 Kiyota, T.; Lee, S.; Sugihara, G. Biochemistry 1996, 35, 13196.   DOI   ScienceOn
16 Yin, L. M.; Edwards, M. A.; Li, J.; Yip, C. M.; Deber, C. M. J. Biol. Chem. 2012, 287, 7738.   DOI
17 Wang, P.; Nan, Y. H.; Shin, S. Y. J. Pept. Sci. 2010, 16, 601.   DOI   ScienceOn
18 Friedrich, C. L.; Moyles, D.; Beveridge, T. J.; Hancock, R. E. Antimicrob. Agents Chemother. 2000, 44, 2086.   DOI   ScienceOn
19 Song, Y. M.; Yang, S. T.; Lim, S. S.; Kim, Y.; Hahm, K. S.; Kim, J. I.; Shin, S. Y. Biochem. Biophys. Res. Commun. 2004, 314, 615.   DOI   ScienceOn
20 Lee, K. H.; Lee, D. G.; Park, Y.; Kang, D. I.; Shin, S. Y.; Hahm, K. S.; Kim, Y. Biochem. J. 2006, 394, 105.   DOI   ScienceOn
21 Friedrich, C. L.; Rozek, A.; Patrzykat, A.; Hancock, R. E. J. Biol. Chem. 2001, 276, 24015.   DOI   ScienceOn
22 Fazio, M. A.; Jouvensal, L.; Vovelle, F.; Bulet, P.; Miranda, M. T.; Daffre, S.; Miranda, A. Biopolymers 2007, 88, 386.   DOI   ScienceOn
23 Nan, Y. H.; Bang, J. K.; Jacob, B.; Park, I. S.; Shin, S. Y. Peptides 2012, 35, 239.   DOI   ScienceOn
24 Chen, Y.; Mant, C. T.; Farmer, S. W.; Hancock, R. E.; Vasil, M. L.; Hodges, R. S. J. Biol. Chem. 2005, 280, 12316.   DOI   ScienceOn
25 Thennarasu, S.; Nagaraj, R. Protein Eng. 1996, 9, 1219.   DOI
26 Dathe, M.; Meyer, J.; Beyermann, M.; Maul, B.; Hoischen, C.; Bienert, M. Biochim. Biophys. Acta 2002, 1558, 171.   DOI   ScienceOn