Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.11.262

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle  

Lee, Jaeho (school of Life Sciences, Gwangju Institute of Science and Technology)
Lee, Daeun (School of Life Sciences, Gwangju Institute of Science and Technology)
Choi, Hyemin (School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), College of Natural Sciences, Kyungpook National University)
Kim, Ha Hyung (College of Pharmacy, Chung-Ang University)
Kim, Ho (School of Life Sciences and Biotechnology, College of Natural Science, Daejin University)
Hwang, Jae Sam (Department of Agricultural Biology, Natural Academy of Agricultural Science, RDA)
Lee, Dong Gun (School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program), College of Natural Sciences, Kyungpook National University)
Kim, Jae Il (School of Life Sciences, Gwangju Institute of Science and Technology)
Publication Information
BMB Reports / v.47, no.11, 2014 , pp. 625-630 More about this Journal
Abstract
Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.
Keywords
Antimicrobial peptide; Circular dichroism; Coprisin; disulfide connectivity; Insect defensin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, K. H., Hong, S. Y. and Oh, J. E. (1998) Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS Lett. 439, 41-45.   DOI   ScienceOn
2 Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344.   DOI   ScienceOn
3 Takeuchi, K., Takahashi, H., Sugai, M., Iwai, H., Kohno, T., Sekimizu, K., Natori, S. and Shimada, I. (2004) Channelforming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. J. Biol. Chem. 279, 4981-4987   DOI
4 Ahn, H. S., Cho, W., Kang, S. H., Ko, S. S., Park, M. S., Cho, H. and Lee, K. H. (2006) Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study. Peptides. 27, 640-648.   DOI   ScienceOn
5 Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W. F., Hetru, C. and Hoffmann, J. A. (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269, 33159-33163.
6 Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. (2009) Isolation and characterization of a defensin-like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept. 1-5.
7 Lee, E., Kim, J. K., Shin, S., Jeong, K. W., Shin, A., Lee, J., Lee, D. G., Hwang, J. S. and Kim, Y. (2013) Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships. Biochim. Biophys. Acta. 1828, 271-283.   DOI   ScienceOn
8 Bulet, P., Stocklin, R. and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169-184.   DOI   ScienceOn
9 Lee, J., Hwang, J. S., Hwang, I. S., Cho, J., Lee, E., Kim, Y. and Lee, D. G. (2012) Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52, 2302-2311.   DOI   ScienceOn
10 Kang, B. R., Kim, H., Nam, S. H., Yun, E. Y., Kim, S. R., Ahn, M. Y., Chang, J. S. and Hwang, J. S. (2012) CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 45, 85-90.   과학기술학회마을   DOI   ScienceOn
11 Kim, J. I., Iwai, H., Kurata, S., Takahashi, M., Masuda, K., Shimada, I., Natori, S., Arata, Y. and Sato, K. (1994) Synthesis and characterization of sapecin and sapecin B. FEBS Lett. 342,189-192.   DOI   ScienceOn
12 Iwanaga, S. and Lee, B. L. (2005) Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38, 128-150.   DOI   ScienceOn
13 Satake, H. and Sekiguchi, T. (2012) Toll-like receptors of deuterostome invertebrates. Front Immunol. 3, 34.
14 Manavalan, P. and Johnson, W. C. (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305, 831-832.   DOI   ScienceOn
15 Yamada, K. and Natori, S. (1994) Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem. J. 298, 623-628.   DOI
16 Hwang, I. S., Hwang, J. S., Hwang, J. H., Choi, H., Lee, E., Kim, Y. and Lee, D. G. (2013) Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr. Microbiol. 66, 56-60.   DOI   ScienceOn
17 Lee, K. H. (2002) Development of short antimicrobial peptides derived from host defense peptides or by combinatorial libraries. Curr. Pharm. Des. 8, 795-813.   DOI   ScienceOn
18 Lepage, P., Bitsch, F., Roecklin, D., Keppi, E., Dimarcq, J. L., Reichhart, J. M., Hoffmann, J. A., Roitsch, C. and Van Dorseelaer, A. (1991) Determination of disulfide bridges in natural and recombinant insect defensin A. Eur. J. Biochem. 196, 735-742.   DOI   ScienceOn
19 Bulet, P. and Stocklin, R. (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12, 3-11.   DOI   ScienceOn
20 Saido-Sakanaka, H., Ishibashi, J., Sagisaka, A., Momotani, E. and Yamakawa, M. (1999) Synthesis and characterization of bactericidal oligopeptides designed on the basis of an insect anti-bacterial peptide. Biochem. J. 338, 29-33.   DOI   ScienceOn