Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.783

Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer  

Lorello, Kim M. (Department of Chemistry and Biochemistry, University of North Carolina)
Kreutzberger, Alex J. (Department of Chemistry and Biochemistry, University of North Carolina)
King, Allison M. (Department of Chemistry and Biochemistry, University of North Carolina)
Lee, Hee-Seung (Department of Chemistry and Biochemistry, University of North Carolina)
Publication Information
Abstract
The binding interaction between a hemolytic peptide ${\delta}$-lysin and a zwitterionic lipid bilayer POPC was investigated through a series of molecular dynamics (MD) simulations. ${\delta}$-Lysin is a 26-residue, amphipathic, ${\alpha}$-helical peptide toxin secreted by Staphylococcus aureus. Unlike typical antimicrobial peptides, ${\delta}$-lysin has no net charge and it is often found in aggregated forms in solution even at low concentration. Our study showed that only the monomer, not dimer, inserts into the bilayer interior. The monomer is preferentially attracted toward the membrane with its hydrophilic side facing the bilayer surface. However, peptide insertion requires the opposite orientation where the hydrophobic side of peptide points toward the membrane interior. Such orientation allows the charged residues, Lys and Asp, to have stable salt bridges with the lipid head-group while the hydrophobic residues are buried deeper in the hydrophobic lipid interior. Our simulations suggest that breaking these salt bridges is the key step for the monomer to be fully inserted into the center of lipid bilayer and, possibly, to translocate across the membrane.
Keywords
${\delta}$-Lysin; Antimicrobial peptides; POPC bilayer; Molecular Dynamics (MD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berger, O.; Edholm, O; Jahnig, F. Biophys. J. 1997, 72, 2002.   DOI
2 Research webpage of D. P. Tieleman (http://moose.bio.ucalgary.ca)
3 Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.   DOI   ScienceOn
4 Dunkin, C. M.; Pokorny, A.; Almeida, P. F.; Lee, H.-S. J. Phys. Chem. B 2011, 115, 1188.   DOI
5 Segrest, J. P.; De Loof, H.; Dohlman, J. G.; Brouillette, C. G.; Anantharamaiah, G. M. Proteins 1990, 8, 103.   DOI
6 Mishra, V. K.; Palgunachari, M. N.; Segrest, J. P.; Anantharamaiah, G. M. J. Biol. Chem. 1994, 269, 7185.
7 Schiffer, M.; Chang, C.-H.; Stevens, F. J. Protein Eng. 1992, 5, 213.   DOI
8 Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A. J. Biol. Chem. 1994, 269, 10444.
9 Fischer, P. M.; Zhelev, N. Z.; Wang, S.; Melville, J. E.; Hraeus, R. F.; Lane, D. P. J. Pept. Res. 2000, 55, 163.   DOI
10 Magzoub, M.; Eriksson, L. E.; Graslund, A. Biophys. Chem. 2003, 103, 271.   DOI
11 Christiaens, B.; Grooten, J.; Reusens, M.; Joliot, A.; Goethals, M.; Vandekerckhove, J. Eur. J. Biochem. 2004, 271, 1187.   DOI
12 Gkela, P.; Sarkisov, L. J. Phys. Chem. B 2010, 114, 826.   DOI
13 Andreu, D.; Rivas, L. Biopolymers 1999, 47, 415.
14 Zasloff, M. Nature 2002, 415, 389.   DOI   ScienceOn
15 Brogden, K. A. Nature Rev. Microbio. 2005, 3, 238.   DOI   ScienceOn
16 Pokorny, A.; Almeida, P. F. In Comprehensive Biophysics; Elsevier: Amsterdam, 2012; pp 189-222.
17 Wade, D.; Boman, A.; Wahlin, B.; Drain, C. M.; Andreu, D.; Bowman, H. G.; Merrifield, R. B. Proc. Natl. Acad. Sci. 1990, 87, 4761.   DOI   ScienceOn
18 Ehrenstein, G.; Lehar, H. Quart. Rev. Biophys. 1977, 10, 1.   DOI   ScienceOn
19 Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W. Biochemistry 1996, 35, 13723.   DOI   ScienceOn
20 Shai, Y. Biopolymers 2002, 66, 236.   DOI   ScienceOn
21 Pokorny, A.; Birkbeck, T. H.; Almeida, P. F. Biochemistry 2002, 41, 11044.   DOI
22 Blondelle, S. E.; Houghten, R. A. Biochemistry 1991, 30, 4671.   DOI   ScienceOn
23 Fitton, J. E. FEBS Lett. 1981, 130, 257.   DOI
24 Matsuzaki, K.; Sugishita, K.; Fuiji, N.; Miyajima, K. Biochemistry 1995, 34, 3423.   DOI   ScienceOn
25 Leontiadou, H.; Mark, A. E.; Marrink, S.-J. J. Am. Chem. Soc. 2006, 128, 12156.   DOI
26 Katsu, T.; Kuroko, M.; Morikawa, T.; Sanchika, K.; Yamanaka, H.; Shinoda, S.; Fujita, Y. Biochim. Biophys. Acta 1990, 1027, 185.   DOI
27 Kreger, A. S.; Kim, K. S.; Zaboretzky, F.; Bernheimer, A. W. Infect. Immun. 1971, 3, 449.
28 Fitton, J. E.; Dell, A.; Shaw, W. V. FEBS Lett. 1980, 115, 209.   DOI
29 Dhople, V. M.; Nagaraj, R. Biosci. Rep. 1993, 13, 245.   DOI
30 Matsuzaki, K.; Nakamura, A.; Murase, O.; Sugishita, K.; Fuiji, N.; Miyajima, K. Biochemistry 1997, 36, 2104.   DOI
31 Matsuzaki, K.; Sugishita, K.; Ishibe, N.; Ueha, M.; Nakata, S.; Miyajima, K.; Epand, R. M. Biochemistry 1998, 37, 11856.   DOI   ScienceOn
32 Mellor, I. R.; Thomas, D. H.; Sansom, M. S. Biochim. Biophys. Acta 1988, 942, 280.   DOI   ScienceOn
33 Talbot, J. C.; Thiaudiere, E.; Vincent, M.; Gallay, J.; Siffert, O.; Dufourcq, J. Eur. Biophys. J. 2001, 30, 147.   DOI
34 Pokorny, A.; Almeida, P. F. Biochemistry 2004, 43, 8846.   DOI
35 Almeida, P. F.; Pokorny, A. Biochemistry 2009, 48, 8083.   DOI
36 Wimley, W. C.; White, S. H. Nat. Struc. Biol. 1996, 3, 842.   DOI   ScienceOn
37 Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theor. Comput. 2008, 4, 435.   DOI   ScienceOn
38 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Herman, J. In Intermolecular Forces; Pullam, B., Ed.; Reidel: Dordrecht, The Netherlands, 1981; p 331.
39 Bessalle, R.; Kapitkovsky, A.; Gorea, A.; Shalit, I.; Fridkin, M. FEBS Lett. 1990, 274, 151.   DOI   ScienceOn
40 Thiaudiere, E.; Siffert, O.; Talbot, J. C.; Bolard, J.; Alouf, J. E.; Dufourcq, J. Eur. J. Biochem. 1991, 195, 203.   DOI
41 Strandberg, E.; Killian, J. A. FEBS Lett. 2003, 544, 69.   DOI