Browse > Article
http://dx.doi.org/10.4014/jmb.1609.09004

Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin  

Kim, Ji-Sun (Department of Chemistry, Hankuk University of Foreign Studies)
Jeong, Ji-Ho (Department of Chemistry, Hankuk University of Foreign Studies)
Kim, Yongae (Department of Chemistry, Hankuk University of Foreign Studies)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.4, 2017 , pp. 759-767 More about this Journal
Abstract
Lactophoricin (LPcin), which is a part of proteose peptone isolated from bovine milk, is a cationic amphipathic ${\alpha}-helical$ antimicrobial peptide. Its truncated variants and mutated analogs were designed and their antimicrobial activities were evaluated by using various assays, like broth dilution methods and disk diffusion methods as well as hemolysis assay. Three analogs, LPcin-C8 (LPcin-YK1), LPcin-T2&6W (LPcin-YK2), and LPcin-T2&6W-C8 (LPcin-YK3), which showed better antibiotic activities than LPcin, were selected. Their secondary structures were also characterized by using CD spectropolarimetry. These three analogs of LPcin could be used as an alternative source of powerful antibacterial agents.
Keywords
Bovine lactophoricin; antimicrobial peptide; cationic amphipathic peptides; engineered analogs; antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hancock REW. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1: 156-164.   DOI
2 Joerger RD. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647.   DOI
3 Brad P. 2013. Washington Post. Available from https://www.washingtonpost.com/news/wonk/wp/2013/12/14/the-fda-is-cracking-down-on-antibiotics-at-farms-heres-what-you-should-know/. Accessed December 14, 2013.
4 Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F. 2012. Natural antimicrobial peptides from bacteria:characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 113: 723-736.   DOI
5 Brown KL, Hancock REW. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24-30.   DOI
6 Fjell CD, Hiss JA, Hancock REW, Schneider G. 2012. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51.   DOI
7 Tossi A, Tarantino C, Romeo D. 1997. Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur. J. Biochem. 250: 549-558.   DOI
8 Mishra B, Basu A, Chua RRY, Saravanan R, Tambyah PA, Ho B, et al. 2014. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens. J. Mater. Chem. B 2: 1706-1716.   DOI
9 Wu G, Ding J, Li H, Li L, Zhao R, Shen Z, et al. 2008. Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Curr. Microbiol. 57: 552-557.   DOI
10 Kim JS, Jeong JH, Kim KS, Kim Y. 2015. Optimized expression and characterization of antimicrobial peptides, LPcin analogs. Bull. Korean Chem. Soc. 36: 1148-1154.   DOI
11 Greenfield NJ. 2006. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1: 2876-2890.
12 Gallo RL, Murakami M, Ohtake T, Zaiou M. 2002. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110: 823-831.   DOI
13 Hancock REW, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557.   DOI
14 Tossi A, Sandri L, Giangaspero A. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30.   DOI
15 Jeong JH, Kim JS, Choi SS, Kim Y. 2016. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys. J. 110: 423-430.   DOI
16 Filipovica N, Borrmannb H, Todorovicc T, Borna M, Spasojevicd V, Sladicc D, et al. 2009. Copper(II) complexes of N-heteroaromatic hydrazones: synthesis, X-ray structure, magnetic behavior, and antibacterial activity. Inorg. Chim. Acta 362: 1996-2000.   DOI
17 Friedrich CL, Moyles D, Beveridge TJ, Hancock REW. 2000. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44: 2086-2092.   DOI
18 Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. 1985. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76: 1427-1435.   DOI
19 Hancock REW, Diamond G. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8: 402-410.   DOI
20 Hancock REW, Rozek A. 2002. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 206: 143-149.   DOI
21 Bulet P, Stocklin R, Menin L. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198: 169-184.   DOI
22 Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248.   DOI
23 Mohammad FV, Noorwala M, Ahmad VU, Sener B. 1995. Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale. Planta Med. 61: 94.
24 Andreu D, Rivas L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47: 415-433.   DOI
25 Huang HW. 2000. Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347-8352.   DOI
26 Matsuzaki K, Sugishita K, Fujii N, Miyajima K. 1995. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34: 3423-3429.   DOI
27 Papagianni M. 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol. Adv. 21: 465-499.   DOI
28 Zhang L, Rozek A, Hancock REW. 2001. Interaction of cationic peptides with model membranes. J. Biol. Chem. 276: 35714-35722.   DOI
29 Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD. 1994. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun. 62: 5397-5403.
30 Campagna S, Mathot AG, Fleury Y, Girardet JM, Gaillard JL. 2004. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone. J. Dairy Sci. 87: 1621-1626.   DOI
31 Gor'kov PL, Chekmenev EY, Li C, Cotten M, Buffy Jarrod J, Traaseth Nathaniel J, et al. 2007. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J. Magn. Reson. 185: 77-93.   DOI
32 Park TJ, Kim JS, Choi SS, Kim Y. 2009. Cloning expression, isotope labeling, purification and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr. Purif. 65: 23-29.   DOI
33 Park TJ, Kim JS, Ahn HC, Kim Y. 2011. Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys. J. 101: 1193-1201.   DOI
34 Bechinger B. 1997. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197-211.   DOI
35 Hancock REW, Lehrer R. 1998. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16: 82-88.   DOI