Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.10.1478

Structural and Functional Characterization of CRAMP-18 Derived from a Cathelicidin-Related Antimicrobial Peptide CRAMP  

Park, Kyong-Soo (Department of Chemistry, Konkuk University)
Shin, Song-Yub (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University)
Hahm, Kyung-Soo (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University)
Kim, Yang-Mee (Department of Chemistry, Konkuk University)
Publication Information
Abstract
CRAMP was identified from a cDNA clone derived from a mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptide. Tertiary structure of CRAMP in TFE/$H_2O$ (1 : 1, v/v) solution has been determined by NMR spectroscopy previously and consists of two amphipathic $\alpha-helices$ from Leu4 to Lys10 and from Gly16 to Leu33. These two helices are connected by a flexible region from Gly11 to Gly16. Analysis of series of fragments composed of various portion of CRAMP revealed that an 18-residue fragment with the sequence from Gly16 to Leu33 (CRAMP-18) was found to retain antibacterial activity without cytotoxicity. The effects of two Phe residues at positions 14 and 15 of CRAMP-18 on structure, antibacterial activity, and interaction with lipid membranes were investigated by $Phe^{14,15}$ ${\rightarrow}$ Ala substitution (CRAMP-18-A) in the present study. Substitution of Phe with Ala in CRAMP-18 caused a significant reduction on antibacterial and membrane-disrupting activities. Tertiary structures of CRAMP-18 in 50% TFE/$H_2O$ (1 : 1, v : v) solution shows amphipathic ${\alpha}$-helix, from $Glu^2{\;}to{\;}Leu^{18}$, while CRAMP-18-A has relatively short amphipathic ${\alpha}$-helix from $Leu^4{\;}to{\;}Ala^{15}$. These results suggest that the hydrophobic property of $Phe^{14}{\;}and{\;}Phe^15$ in CRAMP-18 is essential for its antibacterial activity, ${\alpha}$-helical structure, and interactions with phospholipid membranes.
Keywords
Antimicrobial peptide; CRAMP; CRAMP-18; Phospholipid membranes; Antibacterial activity;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Zanetti, M.; Gennaro, R.; Romeo, D. FEBS Lett. 1995, 374, 1.   DOI   ScienceOn
2 Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95.   DOI   ScienceOn
3 Nilges, M.; Clore, G. M.; Gronenborn, A. M. FEBS Lett. 1988,229, 317.   DOI   ScienceOn
4 Kuszewski, J.; Nilges, M.; Brünger, A. T. J. Biomol. NMR 1992, 2,33.   DOI
5 Bang, E.; Lee, C.; Yoon, J.; Chung, J.; Lee, D.; Lee, W. Bull.Korean Chem. Soc. 2001, 2(5), 507.
6 Zaiou, M.; Gallo, R. L. J. Mol. Med. 2002, 80, 549.   DOI   ScienceOn
7 Ha, J. M.; Shin, S. Y.; Kang, S. W. Bull. Korean Chem. Soc. 1999,20, 1073.   DOI
8 Lehrer, R. I.; Ganz, T. Curr. Opin. Immunol. 1999, 11, 23.   DOI   ScienceOn
9 Martin, E.; Ganz, T.; Lehrer, R. I. J. Leukoc. Biol. 1995, 58, 128.
10 Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355.
11 Brünger A.T. X-PLOR Manual, Version 3.1; Yale University: NewHaven, CT, 1993.
12 Derome, A.; Williamson, M. J. Magn. Reson. 1990, 88, 177.
13 Baxter, N. J.; Williamson, M. P. J. Biomol. NMR 1997, 9, 359.   DOI   ScienceOn
14 Maloy, W. L.; Kari, U. P. Biopolymers 1995, 37, 105.   DOI   ScienceOn
15 Gallo, R. L.; Kim, K. J. J. Biol. Chem. 1997, 272, 13088.   DOI   ScienceOn
16 Yu, K.; Park, K.; Kang, S. W.; Shin, S. Y.; Hahm, K. S.; Kim, Y. J.Pept. Res. 2002, 60, 1.   DOI   ScienceOn
17 Atherton, E.; Logan, C. J.; Sheppard, R. C. J. Chem. Soc. Perkin.Trans. I 1981, 20, 538.
18 Clore, G. M.; Gronenborn, A. M.; Nilges, M.; Ryan, C. A.Biochemistry 1987, 26, 8012.   DOI   ScienceOn
19 Park, K.; Baek, D.; Lim, D.; Park, S.; Kim, M.; Park, Y.; Kim, Y.Bull. Korean Chem. Soc. 2001, 22, 984.
20 Clore, G. M.; Gronenborn, A. M. CRC Crit. Rev. Biochem. Mol.Biol. 1989, 24, 479.   DOI
21 Wuthrich, K. NMR of Protein and Nucleic Acid; Wiley-Interscience: New York, 1986.
22 Wuthrich, K.; Billeter, M.; Braun, W. J. Mol. Biol. 1983, 169,949.   DOI
23 Yu, K.; Kang, S.; Kim, S.; Ryu, P.; Kim, Y. Journal ofBiomolecular Structure and Dynamics 2001, 18(4), 595.   DOI   ScienceOn
24 Boman, H. G. Scand. J. Immunol. 1998, 48, 15.   DOI   ScienceOn
25 Clore, G. M.; Gronenborn, A. M. Protein Sci. 1994, 3, 372.   ScienceOn
26 Wishart, D. S.; Sykes, B. D.; Richards, F. M. Biochemistry 1992,31, 1647.   DOI
27 Marion, D.; Wüthrich, K. Biochem. Biophys. Res. Commun. 1983,113, 967.   DOI   ScienceOn
28 Kim, Y.; Prestegard, J. P. J. Magn. Reson. 1989, 84, 9.
29 Gennaro, R.; Zanetti, M. Biopolymers 2000, 55, 31.   DOI   ScienceOn
30 Zanetti, M.; Gennaro, R.; Romeo, D. Ann. N. Y. Acad. Sci. 1997,832, 147.   DOI
31 Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 63, 207.
32 Hicks, R. P.; Beard, D. J.; Young, J. K. Biopolymers 1992, 32, 85.   DOI   ScienceOn