• Title/Summary/Keyword: ${\alpha}$-glucosidase 억제활성

Search Result 137, Processing Time 0.025 seconds

Effect of Medicinal Plant Water Extracts on Glucose-regulating Enzyme Activities in Goto-Kakizaki Rat Liver Cytosol (약용식물 물 추출물이 Goto-Kakizaki 흰쥐의 간 세포액에서 당대사 관련효소 활성에 미치는 영향)

  • Kim, Dae-Jung;Chung, Mi-Ja;You, Jin-Kyoun;Seo, Dong-Joo;Kim, Jeong-Mi;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1331-1335
    • /
    • 2009
  • We have studied the anti-diabetic effects of medicinal plant water extracts on hepatic glucose-regulating enzymes such as glucokinase (GK) and acetyl-CoA carboxylase (ACC). $\alpha$-Glucosidase inhibitor is usually used to prevent and treat type II diabetes; thus, anti-$\alpha$-glucosidase activity of medicinal plant water extracts was assayed. The hepatic cytosol faction of a type II diabetic animal (Goto-Kakizaki rat) was used in GK and ACC activity assays. The medicinal plants were Lycium chinense (JGP), Discorea japonica Thunb. (SY), Pyrus pyrifolia (YSB), Cornus officinalis (SSY), Paeonia suffruticosa ANDR. (MDP), Cordyceps militaris (DCH), and Acanthopanax senticosus (GSO). JGP, SY, YSB, and SSY water extracts increased the hepatic GK activity and all medicinal plant water extracts led to an increase in hepatic ACC activity. YSB, SSY, MDP, and GSO water extracts showed significantly higher anti-$\alpha$-glucosidase activity than control samples. The highest anti-$\alpha$-glucosidase activity was observed in GSO water extract and the anti-$\alpha$-glucoside activity was higher than that of Acarbose (reference $\alpha$-glucosidase inhibitor). We suggest that JGP, SY, YSB, and SSY water extracts may exert an anti-diabetic effect by enhancing the glucose metabolism and that YSB, MDP and GSO may be used as natural $\alpha$-glucosidase inhibitors in type II diabetic conditions. Increased ACC activity by plant water extracts may provide additional anti-diabetic effect.

Inhibitory Activity on the Diabetes Related Enzymes of Tetragonia tetragonioides (번행초 추출물의 당뇨관련 효소에 관한 저해 활성)

  • Choi, Hye-Jung;Kang, Jum-Soon;Choi, Young-Whan;Jeong, Yong-Kee;Joo, Woo-Hong
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.419-424
    • /
    • 2008
  • In this study, we examined the anti-diabetic activity in vitro by the crude extracts of Tetragonia tetragonioides which has been known to superior plants for the traditional prevention and treatment of stomach-related diseases. $\alpha$-Amylase and $\alpha$-glucosidase, the principal enzymes involved in the metabolism of carbohydrates, and aldose reductase, the key enzyme of the polyol pathway, have been shown to play the important roles in the complications associated with diabetes. A hexane (HX) fraction of T. tetragonioides were shown to inhibit more than 50% of salivary and pancreatin $\alpha$-amylase activity at concentration of 2.882 mg/mL and 2.043 mg/mL, respectively. In addition, the HX and ethylacetate (EA) fraction showed the highest inhibitory activity on yeast $\alpha$-glucosidase at values of $IC_{50}$ of 0.723 mg/mL and 1.356 mg/mL respectively. The HX, dichloromethane (DCM) and EA fraction showed more higher inhibitory activity on yeast $\alpha$-glucosidase than commercial agent such as 1-deoxynorjirimycin and acarbose. Also, the aldose reductase from human muscle cell had been inhibited strongly by the DCM fraction and HX fraction at 51.95% and 47.22% at a concentration of 1 mg/mL, respectively. Our study, for the first time, revealed the anti-diabetic potential of T. tetragonioides and this study could be used to develop medicinal preparations or nutraceutical and functional foods for diabetes and related symptoms.

Inhibitory Effects of Four Solvent Fractions of Alnus firma on α-Amylase and α-Glucosidase. (사방오리나무 추출물의 α-amylase 및 α-glucosidase 저해활성)

  • Choi, Hye-Jung;Jeong, Yong-Kee;Kang, Dae-Ook;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.1005-1010
    • /
    • 2008
  • In this study, we investigated the inhibitory effect of four solvent fractions of Alnus firma on ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase activities. The inhibitory test showed that methanol (MeOH) extract and hexane (HX) fraction strongly inhibited pork pancreatin and salivary ${\alpha}-amylase$ activity. The MeOH extract and HX fraction of Alnus firma at the concentration of 4 mg/ml inhibited more than 70% of pancreatin and salivary ${\alpha}-amylase$ activity. The inhibitory effect of fractions has different specificities against ${\alpha}-amylase$ from pancreatin and salivary. In addition, the MeOH extract and butanol (BuOH) fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ at values of $IC_{50}$ $137.36\;{\mu}g/ml$ and $115.14\;{\mu}g/ml$ respectively. The MeOH extract and BuOH fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ than commercial agent such as 1-deoxynorjirimycin and acarbose. Inhibition kinetics of solvent fractions showed that ${\alpha}-glucosidase$ has been inhibited noncompetitively by the MeOH, EA and BuOH fraction. The aldose reductase from human muscle cell had been inhibited strongly by the MeOH extract and EA fraction at 57.996% and 83.293% at the concentration of $50\;{\mu}g/ml$, respectively. These findings may contribute to biological significance in that ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase inhibitory compounds could be used as a functional food and a drug for the symptomatic treatment of antidiabetic disease in the future.

Antioxidant and α-Glucosidase Inhibition Activity of Solvent Fractions from Prunus mume Ethanol Extract (매실 순차분획물의 용매별 항산화 활성 및 α-glucosidase 억제 효과)

  • Kim, Jeong-Ho;Cho, Hyun-Dong;Won, Yeong-Seon;Park, Wool-Lim;Min, Hye-Ji;Han, Sim-Hee;Moon, Kwang-Deog;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1111-1119
    • /
    • 2019
  • Prunus mume, known as maesil in Korea, has been widely cultivated in East Asia and used as medication and food. However, because most of the previous studies concerning P. mume had been investigated its under extract state, detailed studies are still required for its extensive utilization. In this study, we evaluated the antioxidant and ${\alpha}-glucosidase$ inhibitory activities of solvent fractions of P. mume ethanol extracts. The ethyl acetate fraction showed higher DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and hydrogen peroxide scavenging activity than other fractions. The DPPH radical scavenging activities of ethyl acetate fraction was 67.79%; ABTS radical scavenging activity was 60.03%; reducing power ($OD_{670}$) was 1.26; and hydrogen peroxide scavenging activity was 93.18% at $500{\mu}g/ml$. Also, the ethyl acetate and methanol fraction showed effective levels of ${\alpha}-glucosidase$ inhibition activity (69.25% and 72.29% at $500{\mu}g/ml$). Total polyphenol contents and total flavonoid contents of the ethyl acetate fraction were 88.28 mg/g (gallic acid equivalent) and 70.38 mg/g (quercetin equivalent), respectively. These results suggest that the physiological activities of the ethyl acetate fraction are associated with its polyphenol and flavonoid contents. Therefore, this study can be used as basic data for developing natural antioxidants and potential functional material using P. mume.

α-Glucosidase Inhibitory Effects for Solvent Fractions from Methanol Extracts of Sargassum fulvellum and Its Antioxidant and Alcohol-Metabolizing Activities (참모자반 메탄올 추출 분획물의 항산화 및 숙취해소능과 α-glucosidase 활성저해효과)

  • Kang, Su Hee;Cho, Eun Kyung;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1420-1427
    • /
    • 2012
  • We investigated the physiological activity and solvent-partitioned fractions of methanol extracts from the green seaweed Sargassum fulvellum. The methanol extract from S. fulvellum was sequentially fractionated with n-hexane (SFMH), methanol (SFMM), buthanol (SFMB), and water (SFMA). We investigated the antioxidant activities of solvent fractions from S. fulvellum by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity and an SOD activity assay. DPPH radical scavenging capacity of SFMM was 79.5% at 10 mg/ml. SOD activity of SFMM was 79.9% at 10 mg/ml. Nitrite scavenging activities of solvent fractions from S. fulvellum were investigated under different pH conditions and showed the most remarkable effect at pH 1.2. In particular, the activity of SFMB was higher than the other fractions. ADH activity and ALDH activity of SFMM were 177.0% and 167.4% at 10 mg/ml, respectively. ${\alpha}$-Glucosidase inhibitory activity of SFMH increased in a dose-dependent manner and was about 94.1% at 2 mg/ml. Elastase inhibitory activity was 93.2% at 2 mg/ml. These results revealed that S. fulvellum extracts have strong antioxidant and alcohol dehydrogenase activities and ${\alpha}$-glucosidase inhibitory activity, suggesting that S. fulvellum extracts have potential as a source of natural products for health and beauty.

Anti-Oxidative and Anti-Proliferative Effect of 70% Ethanol Extracts from Green Pepper (Capsicum annuum L. cv. DangZo) (당조고추 70% 에탄올추출물의 항산화 및 항암활성측정)

  • Lee, Youn Ri
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1127-1131
    • /
    • 2017
  • To evaluate the anti-oxidant and anti-tumor potential of the green pepper (Capsicum annuum L. cv. DangZo), total polyphenol content, radical scavenging activities and anti-tumor properties were measured. The total polyphenol content of the 70% ethanol extracts from green pepper (Capsicum annuum L. cv. DangZo) was 30.29 mg gallic acid equivalent/g extract. The DPPH radical and hydroxyl radical scavenging activities of 70% ethanol extracts of green pepper (Capsicum annuum L. cv. DangZo) were documented at 2.87 and 10.55, respectively. For ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory activity, 70% ethanol extracts of green pepper (Capsicum annuum L. cv. DangZo) were documented at 35.67% and 58.41% respectively. The green pepper (Capsicum annuum L. cv. DangZo) demonstrated greater capability in terms of anti-neoplastic activity vis-a-vis colon cancer cell lines when compared to other cancer cell lines.s. er (Capsicum annuum L. cv. DangZo) higher activities of anticancer activities on colon cancer cell lines compared to other cancer cell lines.

Effects of Fermentation on the Metabolic Activities of Pine Needle Juice (발효과정이 솔잎 착즙액의 항산화, alpha-Glucosidase 및 Angiotensin Converting Enzyme 저해 활성에 미치는 영향)

  • Kim, So-Yun;Lee, Hyun-Jung;Park, Jae-Hee;Kim, Rae-Young;Cheong, Hyeonsook;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.325-334
    • /
    • 2013
  • The objective of this study was to compare the content and metabolic activities between fresh pine needle juice (PNJ) and fermented pine needle juice (FPNJ). A variety of factors were measured, including total phenolic content (TPC), antioxidant activity [DPPH radical scavenging activity (RSA), total radical-trapping antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), cellular antioxidant capacity (CAC)], anti-genotoxic activity, ${\alpha}$-glucosidase inhibitory activity, and angiotensin converting enzyme (ACE) inhibitory activity. The TPC was $17.3{\pm}0.2$ and $4.6{\pm}0.0$ mg GAE/g in PNJ and FPNJ, respectively. The DPPH RSA, TRAP, and ORAC values increased in a dose-dependent manner for both PNJ and FPNJ, with significantly higher activities in PNJ than FPNJ. The CAC against AAPH-induced oxidative stress in HepG2 cells was protected by both PNJ and FPNJ. Pretreatment with PNJ and FPNJ in human leukocytes produced significant reductions in $H_2O_2$-induced DNA damage at a concentration of $50{\mu}g/mL$. ${\alpha}$-Glucosidase inhibitory activity was significantly higher in FPNJ than PNJ. The ACE inhibitory activity was about 87.1% and 60.0% in 1:1 diluted PNJ and FPNJ, respectively. This study suggests that the fermentation of PNJ could enhance the regulation of blood glucose metabolism and both PNJ and FPNJ might be a new potential source of natural antioxidant, anti-diabetic, and anti-hypertensive agents applicable to food.

The Inhibitory Effect of Cornus walteri Extract Against ${\alpha}-amylase$ (말채나무 추출물의 ${\alpha}-amylase$ 저해 활성)

  • Lim, Chae-Sung;Li, Chun-Ying;Kim, Yong-Mu;Lee, Wi-Young;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • ${\alpha}-Amylase$ inhibitor is used to control blood glucose level by inhibiting starch digestion in the small intestine and delaying the absorption of glucose. In this study, we investigated the effect of the ethanol extracts from more than 1400 species of plants against ${\alpha}-amylase$ with the aim of developing a new ${\alpha}-amylase$ inhibitor. In the results, Cornus walteri extracts showed the highest inhibition activity. The inhibitory effect of Cornus walteri extract on the carbohydrate hydrolysis enzymes has different sensitivities against ${\alpha}-amylase$ from salivary and pancreatin and against ${\alpha}-glucosidase$ from yeast and porcine small intestine. In the study of inhibition kinetics of ${\alpha}-amylase$ and ${\alpha}-glucosidase$, Cornus walteri extract showed competitive inhibition against salivary and pancreatin while showing the combination of uncompetitive and noncompetitive inhibition against ${\alpha}-glucosidase$. The Cornus walteri extract was stable at acidic and thermal conditions. As for the blood glucose and body weight levels of Cornus walteri extract, we confirmed anti-hyperglycemic and anti-obesity effects. Also, in the investigation of the mRNA lever, Cornus walteri extract upregulated the level of GLUT4 mRNA in the quadriceps muscle.

Inhibitory Effect of Endarachne binghamiae Extract on Melanin Synthesis (미역쇠(Endarachne binghamiae)추출물의 멜라닌 생성 억제 효과)

  • Jeon, Youngsic;Jung, Yujung;Youm, Jong-Kyung;Kim, Yong Kee;Kim, Su-Nam
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.526-532
    • /
    • 2013
  • In this study, we investigated the effect of 88 marine algae extracts on melanin synthesis to develop new whitening agents. Among varieties of marine algae tested, the ethyl acetate extracts from Endarachne binghamiae (EB), Scytosiphon lomentaria, Sargassum yezoense, Ecklonia cava and Sargassum fusiforme inhibited melanin synthesis in melan-a cells. EB treatment showed the strongest inhibitory activity in melanin synthesis, compared with that of other extracts. EB-mediated inhibition of melanin synthesis appeared to be associated with inhibition of ${\alpha}$-glucosidase-dependent glycosylation of tyrosinase in melan-a cells. In addition, EB treatment did not affect mushroom tyrosinase or cell-extracted tyrosinase activity in vitro. Taken together, our findings suggest that anti-browning effect of EB on skin is mediated through regulation of ${\alpha}$-glucosidase activity and subsequent inhibition of tyrosinase activity and melanin synthesis, and further development of EB as a potential agent for skin whitening.

Antiadipogenic Effects of Red Radish (Raphanus sativus L.) Sprout Extract in 3T3-L1 Preadipocytes (적무 새싹 추출물의 3T3-L1 지방전구세포에서 지방합성 억제 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Cheon, Chun Jin;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1224-1230
    • /
    • 2014
  • The red radish (Raphanus sativus L.; RR) sprout is a plant of the cruciferous family. In this study, we elucidated the effect of the water extract of RR sprout (RRSE) against ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity and adipogenesis in 3T3-L1 preadipocytes. ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity was inhibited in a concentration-dependent manner by RRSE treatment. RSSE also abolished adipocyte differentiation and lipid and triglyceride accumulation without cytotoxicity in 3T3-L1 adipocytes. In addition, RRSE modulated the expression of the proteins related to adipogenic transcription factors: peroxisome proliferator-activated receptor (PPAR)${\gamma}$, sterol regulatory element-binding protein 1 (SREBP-1), and CCAT/enhancer binding protein (C/EBP)${\alpha}$. RRSE also suppressed expression of the proteins responsible for lipid synthesis, transport, and storage: adiponectin, fatty acid synthesis (FAS), perilipin, and fatty acid bind protein-4 (FABP4). This study showed that RRS treatment has the potential to inhibit obesity by controlling the expression of adipogenic transcription factors and adipogenic proteins.