• 제목/요약/키워드: $\mathcal{Q}_s$ space

검색결과 16건 처리시간 0.023초

COMPOSITION OPERATORS ON 𝓠K-TYPE SPACES AND A NEW COMPACTNESS CRITERION FOR COMPOSITION OPERATORS ON 𝓠s SPACES

  • Rezaei, Shayesteh
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.55-64
    • /
    • 2017
  • For -2 < ${\alpha}$ < ${\infty}$ and 0 < p < ${\infty}$, the $\mathcal{Q}_K$-type space is the space of all analytic functions on the open unit disk ${\mathbb{D}}$ satisfying $$_{{\sup} \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^p(1-{{\mid}z{\mid}^2})^{\alpha}K(g(z,a))dA(z)<{\infty}$$, where $g(z,a)=log\frac{1}{{\mid}{\sigma}_a(z){\mid}}$ is the Green's function on ${\mathbb{D}}$ and K : [0, ${\infty}$) [0, ${\infty}$), is a right-continuous and non-decreasing function. For 0 < s < ${\infty}$, the space $\mathcal{Q}_s$ consists of all analytic functions on ${\mathbb{D}}$ for which $$_{sup \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^2(g(z,a))^sdA(z)<{\infty}$$. Boundedness and compactness of composition operators $C_{\varphi}$ acting on $\mathcal{Q}_K$-type spaces and $\mathcal{Q}_s$ spaces is characterized in terms of the norms of ${\varphi}^n$. Thus the author announces a solution to the problem raised by Wulan, Zheng and Zhou.

A NOTE ON MATRICES WITH SIGNED NULL-SPACES

  • KIM, SI-JU;CHOI, TAEG-YOUNG;LEE, IN-HO
    • 호남수학학술지
    • /
    • 제26권3호
    • /
    • pp.341-353
    • /
    • 2004
  • We denote by ${{\mathcal{Q}}(A)}$ the set of all matrices with the same sign pattern as A. A matrix A has signed null-space provided there exists a set ${\mathcal{S}}$ of sign patterns such that the set of sign patterns of vectors in the null-space of ${\tilde{A}}$ is ${\mathcal{S}}$, for each ${\tilde{A}}{\in}{{\mathcal{Q}}(A)}$. Some properties of matrices with signed null-spaces are investigated.

  • PDF

On Some Spaces Isomorphic to the Space of Absolutely q-summable Double Sequences

  • Capan, Husamettin;Basar, Feyzi
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.271-289
    • /
    • 2018
  • Let 0 < q < ${\infty}$. In this study, we introduce the spaces ${\mathcal{BV}}_q$ and ${\mathcal{LS}}_q$ of q-bounded variation double sequences and q-summable double series as the domain of four-dimensional backward difference matrix ${\Delta}$ and summation matrix S in the space ${\mathcal{L}}_q$ of absolutely q-summable double sequences, respectively. Also, we determine their ${\alpha}$- and ${\beta}-duals$ and give the characterizations of some classes of four-dimensional matrix transformations in the case 0 < q ${\leq}$ 1.

Q-MEASURES ON THE DUAL UNIT BALL OF A JB-TRIPLE

  • Edwards, C. Martin;Oliveira, Lina
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.197-224
    • /
    • 2019
  • Let A be a $JB^*$-triple with Banach dual space $A^*$ and bi-dual the $JBW^*$-triple $A^{**}$. Elements x of $A^*$ of norm one may be regarded as normalised 'Q-measures' defined on the complete ortho-lattice ${\tilde{\mathcal{U}}}(A^{**})$ of tripotents in $A^{**}$. A Q-measure x possesses a support e(x) in ${\tilde{\mathcal{U}}}(A^{**})$ and a compact support $e_c(x)$ in the complete atomic lattice ${\tilde{\mathcal{U}}}_c(A)$ of elements of ${\tilde{\mathcal{U}}}(A^{**})$ compact relative to A. Necessary and sufficient conditions for an element v of ${\tilde{\mathcal{U}}}_c(A)$ to be a compact support tripotent $e_c(x)$ are given, one of which is related to the Q-covering numbers of v by families of elements of ${\tilde{\mathcal{U}}}_c(A)$.

ON SIGNED SPACES

  • Kim, Si-Ju;Choi, Taeg-Young
    • East Asian mathematical journal
    • /
    • 제27권1호
    • /
    • pp.83-89
    • /
    • 2011
  • We denote by $\mathcal{Q}(A)$ the set of all matrices with the same sign pattern as A. A matrix A has signed -space provided there exists a set S of sign patterns such that the set of sign patterns of vectors in the -space of e $\tilde{A}$ is S, for each e $\tilde{A}{\in}\mathcal{Q}(A)$. In this paper, we show that the number of sign patterns of elements in the row space of $\mathcal{S}^*$-matrix is $3^{m+1}-2^{m+2}+2$. Also the number of sign patterns of vectors in the -space of a totally L-matrix is obtained.

EXTREMAL CASES OF SN-MATRICES

  • Kim, Si-Ju;Choi, Tae-Young
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.659-670
    • /
    • 2008
  • We denote by $\mathcal{Q}$(A) the set of all real matrices with the same sign pattern as a real matrix A. A matrix A is an SN-matrix provided there exists a set S of sign pattern such that the set of sign patterns of vectors in the -space of $\tilde{A}$ is S, for each ${\tilde{A}}{\in}\mathcal{Q}(A)$. Some properties of SN-matrices arc investigated.

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • 제63권2호
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).