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ON SIGNED SPACES

S1-Ju KiM AND TAEG-YoUNG CHoOTI*

ABSTRACT. We denote by Q(A) the set of all matrices with the same sign
pattern as A. A matrix A has signed null-space provided there exists a
set S of sign patterns such that the set of sign patterns of vectors in the
null-space of A is S, for each A € Q(A). In this paper, we show that
the number of sign patterns of elements in the row space of S*-matrix
is 3m+1 —2m+2 4 9. Also the number of sign patterns of vectors in the
null-space of a totally L-matrix is obtained.

1. Introduction

The sign of a real number a is defined by

-1 ifa<0,
sign(a) = 0 ifa=0,and
1 ifa>0.

A sign pattern is a (0,1, —1)-matrix. The sign pattern of a matriz A is the
matrix obtained from A by replacing each entry by its sign. We denote by
Q(A) the set of all matrices with the same sign pattern as A. The zero pattern
of a matrix A is the (0,1) matrix obtained from A by replacing each nonzero
entry by 1.

Let A be an m by n matrix and b an m by 1 vector. The linear system
Axz = b has signed solutions provided there exists a collection S of n by 1 sign
patterns such that the set of sign patterns of the solutions to Az =1bis S , for
cach A € Q(A) and b € Q(b). This notion generalizes that of a sign-solvable
linear system (see [1] and references therein). The linear system, Az = b, is
sign-solvable provided each linear system Az = b (A € Q(A), b € Q(b)) has a
solution and all solutions have the same sign pattern. Thus, Ax = b is sign-
solvable if and only if Az = b has signed solutions and the set S is singleton.

A matrix A has signed null-space provided Ax = 0 has signed solutions.
Thus, A has signed null-space if and only if there exists a set S of sign patterns
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such that the set of sign patterns of vectors in the null-space of AisS , for each
A € Q(A). An L-matriz is a matrix, A, with the property that each matrix in
Q(A) has linearly independent rows. A square L-matrix is a sign-nonsingular,
or SNS-matrix for short. A totally L-matrix is an m X n matrix such that each
m X m submatrix is an SNS-matrix. An m x n totally L-matrix with n =m+1
is called S*-matriz. An S*-matrix is called S-matriz if it is row-mixed. It is
known that totally L-matrices are matrices with signed null-spaces. Hence the
set of matrices with signed null-spaces generalizes the set of totally L-matrices.
Matrices with signed null-spaces are characterized in [4, 5, 6, 7, 8, 9].

In this paper, we consider matrices with signed null-space and signed row-
space and we show that the number of sign patterns of elements in the row
space of S*-matrix is 3™ — 2m+2 4+ 2. Also we obtain that

[full sign patterns of N.S(A)| + |full sign patterns of RS(A)| = 2"

if A be an m by n non-degenerate matrix. Using this property, we obtain the
number of sign patterns of vectors in the null-space of a totally L-matrix.

For a given m by n matrix A, we denote the row-space and null-space of A
by RS(A) and NS(A), respectively. We denote diag(dy, ds, ..., d,) for the n by
n diagonal matrix whose (i, %)-entry is d;. Also, we denote a zero matrix of an
appropriate size by O. For a set S of matrices, the set of all sign patterns of
matrices in S is denoted by SP(5S).

2. Signed spaces

The matrix A has signed row-space provided there exists a set S of sign
patterns such that the set of sign patterns of vectors in the row-space of Ais S ,
for cach A € Q(A). As the row-space of a matrix is the orthogonal complement
of its null-space, it is natural to conjecture that A has signed null-space if and
only if A has signed row-space. The next theorem shows that this is indeed the
case.

Theorem 2.1. ([4]) Let A be an m by n matriz. Then A has signed row-space
if and only if A has signed null-space.

Let B be an m by n (0,1, —1)-matrix. The matrix A is conformally con-
tractible to B provided there exists an index k such that the rows and columns
of A can be permuted so that A has the form

Bl(m), (n) \ {k} | =
| (1)

where x = [z1,...,2,,])7 and y = [y1,...,ym]T are (0,1, —1) vectors such that
xy; > 0 fori=1,2,...,m, and the sign pattern of x + y is the kth column of
B.
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Corollary 2.2. Let A be an m by n matriz and let B be a matrixz obtained
from A by a conformal contraction. Then A has signed row-space if and only
if B has signed row-space.

Proof. It is known that if A is an m by n matrix and B is a matrix obtained
from A by a conformal contraction, then A has signed nullspace if and only
if B has signed nullspace. Since A has signed row-space if and only if A has
signed null-space by Theorem A, we have the result. (I

A vector is mized if it has a positive entry and a negative entry. A matrix
is row-mized if each of its rows is mixed. A vector is balanced if it is the zero
vector or is mixed. The notion of a row-balanced matrix is defined analogously.
A signing is a nonzero, diagonal (0,1, —1)-matrix. A signing is strict if each
of its diagonal entries is nonzero. A matrix B is strictly row-mizable provided
there exists a strict signing D such that BD is row-mixed. Let S be a set of
sign patterns. A nonzero sign pattern x in S is minimal if a sign pattern z
obtained from x by replacing any nonzero entry with 0 is not in S.

For a given m by n row-mixed matrix A, let M4 be {D : minimal signing
such that AD is balanced } and let Dy be {d = (dy,...,d,)|diag(ds,...,d,) €
Mau}. And let V4 be {v = (v1,...,v,) € R*uv;d; = 0 for all i or there exist
i,j with v;d; > 0 and v;d; < 0 for all d € D4}. Then we have the following
question:

Problem. Is SP(RS(A)) equal to SP(V4) if A has signed null-space?.
We can derive one direction of the result easily as seen in the following.

Proposition 2.3. If A be an m by n mizxed matriz which A has signed null-
space, then SP(RS(A)) CSP(V4).

Proof. Let v = (v1,...,v,) € RS(A) and let D be a minimal signing such
that AD is balanced. Without loss of generality, we may assume that D =
diag(dy,...,dx,0,---,0). Then there exists x € NS(AD) such that

X:(Il,...,fﬂk,o,...,O), xz;>0,i=1,...,k.
Since (vidy, .. .,vndy,) € RS(AD) = NS(AD)*,

(nidy, ..., vndy) - (z1,...,2,0,...,0) =0

and hence Zle vid;x; = 0. Thus v;d; = 0 for all ¢ or there exist 4,7 with
v;d; > 0 and v;d; < 0. This implies SP(RS(A)) C SP(Va). O

We can show that the Problem is true if A is an m by m + 1 S-matrix.
Let A be m by m + 1 S-matrix. Then its nullspace is spanned by a vector
a each of whose entries is positive. Hence M 4 consists of the m + 1-square
identity matrix I,,4+1. Let v.€ V4. If v # 0, then there exists a vector
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v’ such that SP(v) = SP(v’) and v/ -a = 0. Hence v € RS(A). Thus
SP(RS(A)) =SPVa).

From this fact, we have SP(RS(A)) = SP(RS(B)) for any two m by m + 1
S-matrices A, B. Moreover, |SP(RS(A))| = |SP(RS(B))| for any two m by
m + 1 S*-matrices A, B.

Proposition 2.4. SP(RS(A)) = SP(V4) if A has an m by n (m < n) totally
L matriz.

Proof. Let A be an m by n totally L matrix. Since we have indicated the
equality for n = m + 1, we will prove it for n = m + 2. Without loss of
generality, we may assume that A is row mixed. Then every vector in D4 has
at most one zero entry. Choose two vectors v, w in D4 such that each of them
has exactly one zero entry. Then there exist a, b in R™*2 such that SP(a) =
SP(v),SP(b) = SP(w) and {a,b} is a basis of NS(A). Let v € V4. If v # 0,
then there exists a vector v’ such that SP(v) = SP(v') and v'-a = 0,v'-b = 0.
Hence v/ € RS(A). Thus SP(V4) C SP(RS(A)). O

Let A be an m by m + 2 totally L matrix. Notice that there exists a vector
d; = (di1,...,dmy2) in Dy such that d; =0 for each i = 1,2,...,m + 2. Since
SP(D4) C SP(NS(A)), any nonzero vector in the row space of A should have
at least 3 nonzero entries. In fact, any element of SP(RS(A)) with exactly 3
non-zero entries in the same positions is unique as shown in the following. Let
e;;j denote the vector all of whose entries are 0 except for the i-th, j-th, k-th
entries which are 1 of suitable size.

Corollary 2.5. Let A be an m by m + 2 totally L-matriz, and let v be in
SP(RS(A)) such that the zero pattern of v is e for some i,j and k with
1<i<j<k<m+2}. There is no sign pattern in SP(RS(A)) different from
+v whose zero pattern is €.

Proof. Let v = (v1,v2, -+, Um+2) € SP(RS(A) have 3 non-zero entries. With-
out loss of generality, we may assume that the zero pattern of v is e123. Suppose
that w = (w1, wa, ..., Wnt2) € SP(RS(A) such that w # +v and the zero pat-
tern of w is e193. Then there are 4, j in {1, 2, 3} such that v;v;w;w; = —1. Let k
be the integer which is neither ¢ nor j in {1,2,3}. Let dx, = (d1,da,...,dm+2) €
D such that d = 0. Since v;d;v;d; < 0 and w;d;w;d; < 0 by Proposition 3,
vivjw;w; = 1 which is impossible. O

Notice that a matrix which is not an SN S-matrix but has signed null-space
has at least 3 sign patterns of vectors in its null-space. The following propo-
sition characterizes the matrices whose signed null-space has exactly 3 sign
patterns.

Proposition 2.6. Let A be an m by m + 1 matriz. Then the following are
equivalent.
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(a) A has signed null-space,
(b) [SP(NS(A))| =3,
(c) A is permutation equivalent to a matriz of the form

B C
O D
where B is an S*-matriz and D is an (vacuously) SN S-matriz.

Proof. (¢) = (b). There is nothing to prove.

(b) = (a). Without loss of generality, we may assume that the sign patterns
of null-space of A are +(1,1,...,1) and 0. Let a,b be non-zero vectors in
null-space of A. Let the sign patterns of a be (1,1,...,1). If a is not scalar
multiple of b, then we have a sign pattern of the row space of A which is not
+(1,1,...,1) and 0. This is impossible. Hence null-space of A is generated by
a positive vector. This means that A is an S-matrix.

(a) = (c). A is permutation equivalent to a matrix of the form

B C
0 5]
where B is a row-mixable matrix and columns of D are linearly independent.
If the number of rows of D is more than that of columns of D, the matrix
B has a square sub-matrix which is row-mixed. This means B has no signed
null-space and hence A has no signed null-space. Hence D is an SN S-matrix.

B is an m by m + 1 row-mixable matrix which has signed null-space. Hence B
is an S*-matrix. O

Let S,, be the m by m + 1 matrix such that
1 -1

1 -1
S =

1 -1
where the unspecified entries are zero. Notice that the matrix S,, is an S-
matrix.

Let P, be the set of v € SP(RS(S,,)) whose first nonzero entry is positive.
Let a,, be the number of elements in P,,. For m > 2, P, has exactly a,,_1
sign patterns whose last entry is 0. Hence we have the following result.

Lemma 2.7. a,, = 5a,;—1 — 6am—o+ 1, (m >3). Here, a1 =1 and ay = 6.

Proof. We will prove it by induction on m. There is nothing to prove for
m = 1,2. Let m > 3. It is easy to show that P,, has exactly a,,—; sign
patterns v = (v1,va,...,Um41) such that vy, vs,..., v, are fixed and vy, 41 is
one of among 1, 0, -1 . Notice that the other sign patterns w of P,, have
nonzero in the last entry. Let v’ and w' be the vectors obtained from v and
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w by adding the last component which is 0 respectively. Hence we can get the
sign patterns of the row-space of P,, 41 by acting the last row of S, 41 to v’ and
w'. Thus we obtain 5 distinct sign patterns from each w' and 9 distinct sign
patterns from three patterns v'. Hence we have Qm+1 = DAy, —6a,,—1+1. O

Proposition 2.8. The number of sign patterns of elements in the row-space
of Sy, is 3t —om+2 L 9

Proof. From a,, = 5a,,—1 — 6a,,—2 + 1, we have the characteristic equation
22 — 52 + 6 = 0. Hence we can put a,, = a2™ + 33™ + ~. Then we have

atp+y = 0,

2+38+~v = 1,

4da+9B8+~v = 6.

Thus 3 1
= —2-2" 4 = .3m 4 =

a +2 +2

1
=—2mtl 4 §(3m+1 +1).

The number of sign patterns of elements of row-space of S,, is 2a,, +1 =
3m+1 _ 2m+2 + 2. 0

Corollary 2.9. The number of sign patterns of elements in the row-space of
an S*-matriz is 3m T —2m+2 42,

An m by n matrix is non-degenerate if its m by m sub-matrices are invertible.
A sign pattern v of a vector is full sign pattern if v has no zero entry. Let
FSP(RS(A)) and FSP(NS(A)) denote the set of all full sign patterns of vectors
in the row-space of A and null-space of A respectively.

Proposition 2.10. For any m by n non-degenerate matrix A,
|FSP(NS(A))| + |FSP(RS(A))| = 2".

Proof. Let s be a full sign pattern such that Q(s) N RS(A4) = (. Without
loss of generality, we may assume that s = (+,...,+)7. By the separa-
tion theorem for convex sets, there exists a nonzero vector x € NS(A) such
that x > 0. We may assume z = (x1,...,2%,0,...,0) where z; > 0, i =
1,2,...,k. Since A is non-degenerate, k > m. We also have an element
Vi = Wi, Yim,0,...,0,4i,0,...,0) € NS(A) where y;; #0, i = k+1,...,n
and j = 1,...,m, i since every m+1 columns of A are linearly dependent. Then
X+ €pp1Ypyr T --- + €y, € NS(A) for any real ¢;, i = k+1,...,n. Hence
there exists a vector x such that x € Q(s) N1 NS(A). Since RS(A) is orthog-
onal complement of NS(A), SP(NS(A)) N SP(RS(A)) = 0. Thus we have the
result. (]

To show that |[SP(NS(A))| =4m+9if A is an m by m+ 2 totally L-matrix,
we need a lemma which owes to P. Delsarte and Y. Kamp.
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Lemma 2.11. ([2]) For a non-degenerate m by n matriz A,

|[FSP(RS(A))| = 27?2; <” ; 1>.

Proposition 2.12. Let A be an m by m + 2 totally L-matriz. Then

ISP(NS(A))| = 4m + 9.

Proof. By lemma 11, we have

m—1
m—+1
P(RS(A))| =2 =2"%2 _2m — 4.
Fspmsian =23 (") m
Hence |[FSP(NS(A))| = 2m*2 — (2m+2 — 2m — 4) = 2m + 4. Every nonzero

sign pattern of NS(A) which is not full sign pattern of NS(A) must have exactly

on
no

e zero entry. Such a sign pattern is also unique. Hence total number of
nzero sign patterns of NS(A) which are not full sign patterns of NS(A) is

2(m + 2). Since 0 is a sign pattern of RS(A4), we have |[SP(NS(A))| = 2m +
4+2(m+2)+1=4m+9. O
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