KYUNGPOOK Math. J. 58(2018), 271-289 https://doi.org/10.5666/KMJ.2018.58.2.271 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On Some Spaces Isomorphic to the Space of Absolutely *q*-summable Double Sequences

Hüsamettin Çapan

Graduate School of Natural and Applied Sciences, İstanbul University, Beyazıt Campus, 34134 - Vezneciler/İstanbul, Turkey e-mail: husamettincapan@gmail.com

FEYZI BAŞAR* İnönü University, 44280 - Malatya, Turkey Current address: KısıklıMah. Alim Sok. Alim Apt. No: 7/6, 34692 - Üsküdar/ İstanbul, Turkey e-mail: feyzibasar@gmail.com

ABSTRACT. Let $0 < q < \infty$. In this study, we introduce the spaces \mathcal{BV}_q and \mathcal{LS}_q of q-bounded variation double sequences and q-summable double series as the domain of four-dimensional backward difference matrix Δ and summation matrix S in the space \mathcal{L}_q of absolutely q-summable double sequences, respectively. Also, we determine their α - and β -duals and give the characterizations of some classes of four-dimensional matrix transformations in the case $0 < q \leq 1$.

1. Introduction

We denote the set of all complex valued double sequences by Ω which forms a vector space with coordinatewise addition and scalar multiplication. Any vector subspace of Ω is called as *a double sequence space*.

By \mathcal{M}_u , we denote the space of all bounded double sequences, that is

$$\mathcal{M}_u := \left\{ x = (x_{kl}) \in \Omega : \|x\|_{\infty} = \sup_{k,l \in \mathbb{N}} |x_{kl}| < \infty \right\},$$

which is a Banach space with the norm $\|\cdot\|_{\infty}$; where $\mathbb{N} = \{0, 1, 2, \ldots\}$.

^{*} Corresponding Author.

Received July 15, 2017; accepted June 6, 2018.

²⁰¹⁰ Mathematics Subject Classification: $46A45,\,40C05.$

Key words and phrases: summability theory, double sequence, difference sequence space, double series, alpha-dual, beta-dual, matrix domain of 4-dimensional matrices, matrix transformations.

If for every $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ and $L \in \mathbb{C}$ such that $|x_{kl} - L| < \varepsilon$ for all k, l > N, then we call that the double sequence $x = (x_{kl}) \in \Omega$ is convergent to L in the Pringsheim's sense (shortly, p-convergent to L) and write $p - \lim_{k,l\to\infty} x_{kl} = L$; where \mathbb{C} denotes the complex field (see Pringsheim [16]). We denote the space of all p-convergent double sequences by \mathcal{C}_p .

It is well-known that in single sequence spaces a convergent single sequence is bounded. But, in double sequence spaces a *p*-convergent double sequence may be unbounded. A double sequence $x \in \mathcal{C}_p \cap \mathcal{M}_u$ is called *boundedly convergent to* L *in the Pringsheim's sense* (shortly, *bp*-convergent to L), where L is the *p*-limit of x. We denote the space of such sequences by \mathcal{C}_{bp} .

Throughout the text the summation without limits runs from 0 to ∞ , for example $\sum_{k,l} x_{kl}$ means that $\sum_{k,l=0}^{\infty} x_{kl}$, and unless stated otherwise, we assume that ϑ denotes any of the symbols p or bp.

We denote the space of all absolutely q-summable double sequences by $\mathcal{L}_q,$ that is,

$$\mathcal{L}_q := \left\{ x = (x_{kl}) \in \Omega : \sum_{k,l} |x_{kl}|^q < \infty \right\}, \quad (0 < q < \infty).$$

If we take q = 1, we obtain the space \mathcal{L}_u of all absolutely summable double sequences.

Let $\mathbf{e}^{\mathbf{kl}} = (\mathbf{e}_{ij}^{\mathbf{kl}})$ be a double sequence defined by

$$\mathbf{e}_{ij}^{\mathbf{kl}} := \begin{cases} 1 & , & (i,j) = (k,l), \\ 0 & , & (i,j) \neq (k,l) \end{cases}$$

for all $i, j, k, l \in \mathbb{N}$ and $\mathbf{e} = \sum_{k,l} \mathbf{e}^{\mathbf{k}\mathbf{l}}$ (coordinatewise sums), is a double sequence that all elements are one. All considered spaces are supposed to contain Φ , the set of all finitely non-zero double sequences; i.e.,

$$\Phi := \left\{ x = (x_{kl}) \in \Omega : \exists N \in \mathbb{N} \forall (k,l) \in \mathbb{N}^2 \setminus [0,N]^2, \ x_{kl} = 0 \right\}$$
$$:= \operatorname{span} \left\{ \mathbf{e}^{\mathbf{kl}} : k, l \in \mathbb{N} \right\}.$$

Let λ be a space of double sequences, converging with respect to some linear convergence rule $\vartheta - \lim : \lambda \to \mathbb{C}$. The sum of a double series $\sum_{i,j} x_{ij}$ with respect to this rule is defined by $\vartheta - \sum_{i,j} x_{ij} = \vartheta - \lim_{m,n\to\infty} \sum_{i,j=0}^{m,n} x_{ij}$. Then, the α -dual λ^{α} and the $\beta(\vartheta)$ -dual $\lambda^{\beta(\vartheta)}$ of a double sequence space λ are respectively defined by

$$\lambda^{\alpha} := \left\{ a = (a_{kl}) \in \Omega : \sum_{k,l} |a_{kl} x_{kl}| < \infty \text{ for all } x = (x_{kl}) \in \lambda \right\},$$

$$\lambda^{\beta(\vartheta)} := \left\{ a = (a_{kl}) \in \Omega : \vartheta - \sum_{k,l} a_{kl} x_{kl} \text{ exists for all } x = (x_{kl}) \in \lambda \right\}.$$

It is easy to see for any two spaces λ and μ of double sequences that $\mu^{\alpha} \subset \lambda^{\alpha}$ whenever $\lambda \subset \mu$.

Let λ and μ be two double sequence spaces, and $A = (a_{mnkl})$ be any fourdimensional complex infinite matrix. Then, we say that A defines a matrix mapping from λ into μ and we write $A : \lambda \to \mu$, if for every sequence $x = (x_{kl}) \in \lambda$ the A-transform $Ax = \{(Ax)_{mn}\}_{m,n \in \mathbb{N}}$ of x exists and belongs to μ ; where

(1.1)
$$(Ax)_{mn} = \vartheta - \sum_{k,l} a_{mnkl} x_{kl} \text{ for each } m, n \in \mathbb{N}.$$

We define the ϑ -summability domain $\lambda_A^{(\vartheta)}$ of A in a space λ of double sequences by

$$\lambda_A^{(\vartheta)} := \left\{ x = (x_{kl}) \in \Omega : Ax = \left(\vartheta - \sum_{k,l} a_{mnkl} x_{kl} \right)_{m,n \in \mathbb{N}} \text{ exists and is in } \lambda \right\}.$$

We say with the notation (1.1) that A maps the space λ into the space μ if $\lambda \subset \mu_A^{(\vartheta)}$ and we denote the set of all four dimensional matrices transforming the space λ into the space μ by $(\lambda : \mu)$. Thus, $A = (a_{mnkl}) \in (\lambda : \mu)$ if and only if the double series on the right side of (1.1) converges in the sense of ϑ for each $m, n \in \mathbb{N}$, i.e, $A_{mn} \in \lambda^{\beta(\vartheta)}$ for all $m, n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax \in \mu$ for all $x \in \lambda$; where $A_{mn} = (a_{mnkl})_{k,l \in \mathbb{N}}$ for all $m, n \in \mathbb{N}$. In this paper, we only consider *bp*-summability domain.

For all $k, l, m, n \in \mathbb{N}$, we say that $A = (a_{mnkl})$ is a triangular matrix if $a_{mnkl} = 0$ for k > m or l > n or both, [1]. By following Adams [1], we also say that a triangular matrix $A = (a_{mnkl})$ is called a triangle if $a_{mnmn} \neq 0$ for all $m, n \in \mathbb{N}$. Referring to Cooke [13, Remark (a), p. 22], one can conclude that every triangle matrix has an unique inverse which is also a triangle.

We shall write throughout for simplicity in notation for all $k, l, m, n \in \mathbb{N}$ that

The four dimensional backward difference matrix $\Delta = (d_{mnkl})$ is defined by

$$d_{mnkl} := \begin{cases} (-1)^{m+n-(k+l)} &, m-1 \le k \le m \text{ and } n-1 \le l \le n, \\ 0 &, \text{ otherwise} \end{cases}$$

for all $k, l, m, n \in \mathbb{N}$. We suppose that the terms of the double sequences $x = (x_{kl})$ and $y = (y_{kl})$ are connected with the relation

(1.2)
$$y_{kl} = (\Delta x)_{kl} = \begin{cases} x_{00} & , & k, l = 0, \\ x_{0l} - x_{0,l-1} & , & k = 0 \text{ and } l \ge 1, \\ x_{k0} - x_{k-1,0} & , & l = 0 \text{ and } k \ge 1, \\ x_{k-1,l-1} - x_{k-1,l} & , & k, l \ge 1 \end{cases}$$

for all $k, l \in \mathbb{N}$. Additionally, a direct calculation gives the inverse $\Delta^{-1} = S = (s_{mnkl})$ of the matrix Δ as follows:

$$s_{mnkl} := \begin{cases} 1 & , & 0 \le k \le m \quad \text{and} \quad 0 \le l \le n, \\ 0 & , & \text{otherwise} \end{cases}$$

for all $k, l, m, n \in \mathbb{N}$. Here, we can redefine the relation between the double sequences $x = (x_{kl})$ and $y = (y_{kl})$ by summation matrix S as follows:

(1.3)
$$x_{kl} = (Sy)_{kl} = \sum_{i,j=0}^{k,l} y_{ij}$$

for all $k, l \in \mathbb{N}$.

It is worth mentioning here that Altay and Başar [2] have defined the spaces \mathcal{BS} and \mathcal{CS}_{ϑ} by using summation matrix S and also Demiriz and Duyar [14] recently defined the spaces $\mathcal{M}_u(\Delta)$ and $\mathcal{C}_{\vartheta}(\Delta)$ by using backward difference matrix Δ , as follows:

$$\begin{aligned} \mathfrak{BS} &:= \left\{ x = (x_{kl}) \in \Omega : \sup_{k,l \in \mathbb{N}} |(Sx)_{kl}| < \infty \right\}, \\ \mathfrak{CS}_{\vartheta} &:= \left\{ x = (x_{kl}) \in \Omega : Sx = \{(Sx)_{kl}\}_{k,l \in \mathbb{N}} \in \mathfrak{C}_{\vartheta} \right\}, \\ \mathfrak{M}_{u}(\Delta) &:= \left\{ x = (x_{kl}) \in \Omega : \sup_{k,l \in \mathbb{N}} |(\Delta x)_{kl}| < \infty \right\}, \\ \mathfrak{C}_{\vartheta}(\Delta) &:= \left\{ x = (x_{kl}) \in \Omega : \Delta x = \{(\Delta x)_{kl}\}_{k,l \in \mathbb{N}} \in \mathfrak{C}_{\vartheta} \right\}. \end{aligned}$$

In this study, we introduce the spaces \mathcal{BV}_q and \mathcal{LS}_q of all double sequences whose Δ -transforms and S-transforms are absolutely q-summable, that is,

$$\mathcal{BV}_q := \left\{ x = (x_{kl}) \in \Omega : \sum_{k,l} \left| (\Delta x)_{kl} \right|^q < \infty \right\},$$

$$\mathcal{LS}_q := \left\{ x = (x_{ij}) \in \Omega : \sum_{k,l} \left| (Sx)_{kl} \right|^q < \infty \right\}.$$

One can easily observe that the sets \mathcal{BV}_q and \mathcal{LS}_q are the domain of the backward difference matrix Δ and summation matrix S in the space \mathcal{L}_q which are q-normed spaces with

$$\|x\|_{\mathcal{BV}_q} = \sum_{k,l} |(\Delta x)_{kl}|^q \quad \text{and} \quad \|x\|_{\mathcal{LS}_q} = \sum_{k,l} |(Sx)_{kl}|^q$$

for $0 < q \leq 1$, and normed spaces with

$$\|x\|_{\mathcal{BV}_{q}} = \left[\sum_{k,l} |(\Delta x)_{kl}|^{q}\right]^{1/q} \text{ and } \|x\|_{\mathcal{LS}_{q}} = \left[\sum_{k,l} |(Sx)_{kl}|^{q}\right]^{1/q}$$

for $1 < q < \infty$, respectively. In the special case q = 1, we obtain the space $\mathcal{BV} = (\mathcal{L}_u)_{\Delta}$, defined by Altay and Başar in [2], and the space $\mathcal{LS} = (\mathcal{L}_u)_S$.

2. New Sequence Spaces

In the present section, we examine some topological properties of the spaces \mathcal{BV}_q and \mathcal{LS}_q , and also give important inclusion theorems related to them.

Theorem 2.1. The spaces \mathcal{BV}_q and \mathcal{LS}_q are linearly isomorphic to the space \mathcal{L}_q , where $0 < q < \infty$.

Proof. We will only show $\mathcal{BV}_q \cong \mathcal{L}_q$ with $0 < q < \infty$.

Let $0 < q < \infty$. With the notation of (1.2), consider the transformation T from \mathcal{BV}_q to \mathcal{L}_q defined by $x \mapsto Tx = \Delta x$. Then, clearly T is linear and injective. Let $y \in \mathcal{L}_q$ and define the sequence x = Sy as in (1.3). Then, we have $\Delta x = \Delta(Sy) = y$ which gives $\|x\|_{\mathcal{BV}_q} = \|y\|_{\mathcal{L}_q}$ with $0 < q \leq 1$ and $\|x\|_{\mathcal{BV}_q} = \|y\|_{\mathcal{L}_q}$ with $1 < q < \infty$, i.e., $x \in \mathcal{BV}_q$. Hence, T is surjective and is norm preserving.

This completes the proof.

Since $\mathcal{BV}_q \cong \mathcal{L}_q$ and $\mathcal{LS}_q \cong \mathcal{L}_q$, we can give following theorem without proof.

Theorem 2.2. The sets \mathcal{BV}_q and \mathcal{LS}_q are linear spaces with the coordinatewise addition and scalar multiplication, and the following statements hold:

- (i) Let 0 < q < 1. Then, BV_q and LS_q are complete q-normed spaces with ||·||_{BV_q} and ||· ||_{LS_q}, respectively.
- (ii) Let $1 \leq q < \infty$. Then, \mathcal{BV}_q and \mathcal{LS}_q are Banach spaces with $\|\cdot\|_{\mathcal{BV}_q}$ and $\|\cdot\|_{\mathcal{LS}_q}$, respectively.

Now, we define the double sequences $\mathbf{b}^{\mathbf{kl}} = (\mathbf{b}_{ij}^{\mathbf{kl}})$ and $\mathbf{d}^{\mathbf{kl}} = (\mathbf{d}_{ij}^{\mathbf{kl}})$ by

$$\begin{split} \mathbf{b}_{ij}^{\mathbf{kl}} &:= & \left\{ \begin{array}{ll} 1 &, \ i \geq k \text{ and } j \geq l, \\ 0 &, \ \text{otherwise}, \end{array} \right. \\ \mathbf{d}_{ij}^{\mathbf{kl}} &:= & \left\{ \begin{array}{ll} 1 &, \ (i,j) = (k,l), (k+1,l+1) \\ -1 &, \ (i,j) = (k+1,l), (k,l+1) \\ 0 &, \ \text{otherwise} \end{array} \right. \end{split}$$

for all $i, j, k, l \in \mathbb{N}$. Then it is obvious that the sets $\{\mathbf{e}, \mathbf{e^{kl}}, \mathbf{b^{kl}}, \mathbf{d^{kl}}; k, l \in \mathbb{N}\} \subset \mathcal{BV}_q$ and $\{\mathbf{d^{kl}}; k, l \in \mathbb{N}\} \subset \mathcal{LS}_q$. These double sequences will be used in the rest of the study.

Definition 2.3.([18, p. 225]) A double sequence space λ is said to be *monotone* if $xu = (x_{kl}u_{kl}) \in \lambda$ (coordinatwise product) for every $x = (x_{kl}) \in \lambda$ and $u = (u_{kl}) \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$, where $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ denotes the set of all double sequences consisting of 0's and 1's.

If λ is monotone, then $\lambda^{\alpha} = \lambda^{\beta(\vartheta)}$, but the converse is not true in general.

Theorem 2.4. The spaces \mathcal{BV}_q and \mathcal{LS}_q are not monotone, where $0 < q < \infty$.

Proof. Let λ be a double sequence space. To show λ is not monotone, we must find a sequence $u = (u_{kl}) \in \{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that $xu = (x_{kl}u_{kl}) \notin \lambda$ for a sequence $x = (x_{kl}) \in \lambda$.

Let us define the double sequence $u = (u_{kl})$ by

$$u_{kl} := \begin{cases} 0 & , & k \text{ or } l \text{ odd,} \\ 1 & , & \text{otherwise} \end{cases}$$

for all $k, l \in \mathbb{N}$. Then $\mathbf{e} \in \mathcal{BV}_q$, but $\mathbf{e}u = u \notin \mathcal{BV}_q$. Hence, the space \mathcal{BV}_q is not monotone.

To show \mathcal{LS}_q is not monotone take $u = \mathbf{e}^{\mathbf{k}\mathbf{l}}$. Then, $\mathbf{d}^{\mathbf{k}\mathbf{l}} \in \mathcal{LS}_q$, but $\mathbf{d}^{\mathbf{k}\mathbf{l}}\mathbf{e}^{\mathbf{k}\mathbf{l}} = \mathbf{e}^{\mathbf{k}\mathbf{l}} \notin \mathcal{LS}_q$. \Box

Theorem 2.5. Let $0 < q < \infty$. Then, the inclusion $\mathcal{L}_q \subset \mathcal{BV}_q$ is strict.

Proof. Let $x = (x_{kl}) \in \mathcal{L}_q$. Then, by neglecting negative indexed terms of x, we obtain

$$\|x\widehat{\|}_{\mathcal{B}\mathcal{V}_{q}} = \sum_{k,l} |x_{k-1,l-1} - x_{k-1,l} - x_{k,l-1} + x_{kl}|^{q}$$

$$\leq 4\sum_{k,l} |x_{kl}|^{q} = 4\|x\widehat{\|}_{\mathcal{L}_{q}}$$

for $0 < q \leq 1$ and by using Minkowski's inequality

$$||x||_{\mathcal{BV}_{q}} = \left(\sum_{k,l} |x_{k-1,l-1} - x_{k-1,l} - x_{k,l-1} + x_{kl}|^{q}\right)^{1/q}$$

$$\leq 4 \left(\sum_{k,l} |x_{kl}|^{q}\right)^{1/q} = 4 ||x||_{\mathcal{L}_{q}}$$

for $1 < q < \infty$, that is, $x \in \mathcal{BV}_q$ for $0 < q < \infty$. Also, by $\mathbf{e} \in \mathcal{BV}_q \setminus \mathcal{L}_q$, the inclusion $\mathcal{L}_q \subset \mathcal{BV}_q$ is strict.

Since backward difference matrix Δ and summation matrix S are opposite working matrices we can give the following inclusion theorem without proof.

Theorem 2.6. Let $0 < q < \infty$. Then, the inclusion $\mathcal{LS}_q \subset \mathcal{L}_q$ is strict.

Theorem 2.7. Let $1 < q < \infty$. Then, the sets \mathcal{L}_q and \mathcal{BV} do not contain each other.

Proof. It is immediate that $\mathbf{e} \in \mathcal{BV} \setminus \mathcal{L}_q$ and $\mathbf{e}^{\mathbf{kl}} \in \mathcal{BV} \cap \mathcal{L}_q$. Consider the sequence $x = (x_{kl})$ defined by

$$x_{kl} := \frac{(-1)^{k+l}}{(k+1)(l+1)}$$

for all $k, l \in \mathbb{N}$. Since q > 1, the series

$$\sum_{k,l} |x_{kl}|^q = \sum_{k,l} \frac{1}{[(k+1)(l+1)]^q}$$

is convergent, that is, $x \in \mathcal{L}_q$. Nevertheless, we get from

$$(2.1)$$

$$(\Delta x)_{kl} = \begin{cases} 1 , k, l = 0, \\ (-1)^l \frac{2l+1}{l(l+1)} , k = 0 \text{ and } l \ge 1, \\ (-1)^k \frac{2k+1}{k(k+1)} , l = 0 \text{ and } k \ge 1, \\ (-1)^{k+l} \frac{(k+1)(l+1) + (k+1)l + k(l+1) + kl}{kl(k+1)(l+1)} , k, l \ge 1 \end{cases}$$

that the series

$$\begin{split} \sum_{k,l} |(\Delta x)_{kl}| &= 1 + \sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} + \sum_{k=1}^{\infty} \frac{2k+1}{k(k+1)} \\ &+ \sum_{k,l=1}^{\infty} \frac{(k+1)(l+1) + (k+1)l + k(l+1) + kl}{kl(k+1)(l+1)} \\ &\geq 1 + \sum_{l=1}^{\infty} \frac{l+1}{l(l+1)} + \sum_{k=1}^{\infty} \frac{k+1}{k(k+1)} + \sum_{k,l=1}^{\infty} \frac{(k+1)(l+1)}{kl(k+1)(l+1)} \\ &= 1 + \sum_{l=1}^{\infty} \frac{1}{l} + \sum_{k=1}^{\infty} \frac{1}{k} + \sum_{k,l=1}^{\infty} \frac{1}{kl} \end{split}$$

diverges which gives the fact that $x \notin \mathcal{BV}$. Therefore, $x \in \mathcal{L}_q \setminus \mathcal{BV}$.

Theorem 2.8. Let $1 < q < \infty$. Then, the sets \mathcal{L}_u and \mathcal{LS}_q do not contain each other.

Proof. One can easily see that $\mathbf{e}^{\mathbf{k}\mathbf{l}} \in \mathcal{L}_u \setminus \mathcal{L}\mathcal{S}_q$ and $\mathbf{d}^{\mathbf{k}\mathbf{l}} \in \mathcal{L}_u \cap \mathcal{L}\mathcal{S}_q$. Consider the sequence $\Delta x = \{(\Delta x)_{kl}\}$ as in (2.1) for all $k, l \in \mathbb{N}$. Then, we obtain

$$\sum_{k,l} |\{S(\Delta x)\}_{kl}|^q = \sum_{k,l} |x_{kl}|^q = \sum_{k,l} \frac{1}{[(k+1)(l+1)]^q} < \infty,$$

i.e., $\Delta x \in \mathcal{LS}_q$, but $\Delta x \notin \mathcal{L}_u$ by Theorem 2.7.

Theorem 2.9. Let 0 < q < 1. Then, the sets \mathcal{L}_u and \mathcal{BV}_q do not contain each other.

Proof. It is clear that $\mathbf{e} \in \mathcal{BV}_q \setminus \mathcal{L}_u$ and $\mathbf{e}^{\mathbf{kl}} \in \mathcal{BV}_q \cap \mathcal{L}_u$. Define $x = (x_{kl})$ by

$$x_{kl} := \frac{(-1)^{k+l}}{[(k+1)(l+1)]^{1/q}}$$

for all $k, l \in \mathbb{N}$. Since 1/q > 1, the series

$$\sum_{k,l} |x_{kl}| = \sum_{k,l} \frac{1}{[(k+1)(l+1)]^{1/q}}$$

is convergent. On the other hand, we see from

(2.2)

$$\begin{cases} 1 & , \quad k, l = 0, \\ (-1)^l \frac{l^{1/q} + (l+1)^{1/q}}{[l(l+1)]^{1/q}} & , \quad k = 0 \text{ and } l \ge 1, \end{cases}$$

$$(\Delta x)_{kl} = \begin{cases} (-1)^k \frac{k^{1/q} + (k+1)^{1/q}}{[k(k+1)]^{1/q}} & , l = 0 \text{ and } k \ge 1, \end{cases}$$

$$\begin{pmatrix} (-1)^{k+l} \frac{[(k+1)(l+1)]^{1/q} + [(k+1)l]^{1/q}}{[kl(k+1)(l+1)]^{1/q}} \\ + (-1)^{k+l} \frac{[k(l+1)]^{1/q} + (kl)^{1/q}}{[kl(k+1)(l+1)]^{1/q}} \end{pmatrix}, \quad k, l \ge 1$$

278

that the series

$$\begin{split} &\sum_{k,l} |(\Delta x)_{kl}|^q \\ &= 1 + \sum_{l=1}^{\infty} \left| \frac{l^{1/q} + (l+1)^{1/q}}{[l(l+1)]^{1/q}} \right|^q + \sum_{k=1}^{\infty} \left| \frac{k^{1/q} + (k+1)^{1/q}}{[k(k+1)]^{1/q}} \right|^q \\ &+ \sum_{k,l=1}^{\infty} \left| \frac{[(k+1)(l+1)]^{1/q} + [(k+1)l]^{1/q} + [k(l+1)]^{1/q}}{[kl(k+1)(l+1)]^{1/q}} \right|^q \\ &\geq 1 + \sum_{l=1}^{\infty} \left| \frac{(l+1)^{1/q}}{[l(l+1)]^{1/q}} \right|^q + \sum_{k=1}^{\infty} \left| \frac{(k+1)^{1/q}}{[k(k+1)]^{1/q}} \right|^q + \sum_{k,l=1}^{\infty} \left| \frac{[(k+1)(l+1)]^{1/q}}{[kl(k+1)(l+1)]^{1/q}} \right|^q \\ &= 1 + \sum_{l=1}^{\infty} \frac{1}{l} + \sum_{k=1}^{\infty} \frac{1}{k} + \sum_{k,l=1}^{\infty} \frac{1}{kl} \end{split}$$

is divergent. Hence, $x \in \mathcal{L}_u \setminus \mathcal{BV}_q$.

Theorem 2.10. Let 0 < q < 1. Then, the sets \mathcal{L}_q and \mathcal{LS} do not contain each other.

Proof. It is easy to see that $\mathbf{e}^{\mathbf{k}\mathbf{l}} \in \mathcal{L}_q \setminus \mathcal{LS}$ and $\mathbf{d}^{\mathbf{k}\mathbf{l}} \in \mathcal{L}_q \cap \mathcal{LS}$. If we consider the sequence x in (2.2), then it is immediate that $x \in \mathcal{LS} \setminus \mathcal{L}_q$. \Box

Let $0 < q < s < \infty$. It is known that the inclusions $\mathcal{L}_q \subset \mathcal{L}_s \subset \mathcal{M}_u$ strictly hold. By combining this fact with Theorem 2.1, we can give the following theorem without proof.

Theorem 2.11. Let $0 < q < s < \infty$. Then, the inclusions $\mathcal{BV}_q \subset \mathcal{BV}_s \subset \mathcal{M}_u(\Delta)$ and $\mathcal{LS}_q \subset \mathcal{LS}_s \subset \mathcal{BS}$ strictly hold.

Theorem 2.12. Let λ denotes any of the spaces \mathcal{M}_u or \mathcal{C}_{ϑ} and $1 < q < \infty$. Then, neither of the spaces \mathcal{BV}_q and λ includes the other one.

Proof. It is clear that $\mathbf{e} \in \mathcal{BV}_q \cap \lambda$. Define $x = (x_{kl})$ and $y = (y_{kl})$ by

$$x_{kl} := \sum_{i,j=0}^{k,l} \frac{1}{(i+1)(j+1)} \quad \text{and} \quad y_{kl} := \begin{cases} 1 & , k = 0 \text{ and } l \text{ even,} \\ 0 & , \text{ otherwise} \end{cases}$$

for all $k, l \in \mathbb{N}$. Then, since

$$(\Delta x)_{kl} := \frac{1}{(k+1)(l+1)}$$
 and $(\Delta y)_{kl} := \begin{cases} (-1)^{k+l} & , k = 0, 1 \text{ and } l \in \mathbb{N}, \\ 0 & , \text{ otherwise} \end{cases}$

one can conclude that $x \in \mathcal{BV}_q \setminus \lambda$ and $y \in \lambda \setminus \mathcal{BV}_q$. Hence, the spaces \mathcal{BV}_q and λ are overlap but neither contains the other.

3. Dual Spaces

In this section, we give the α - and $\beta(bp)$ -duals of the spaces \mathcal{BV}_q and \mathcal{LS}_q in the case $0 < q \leq 1$. It is worth mentioning that although the alpha dual of a double sequence space is unique its beta dual may be more than one with respect to ϑ -convergence rule. By $\lambda^{n\zeta}$, we mean that $\{\lambda^{(n-1)\zeta}\}^{\zeta}$ for a double sequence space λ and $n \in \mathbb{N}_1$, the set of positive integers. It is well-known that $\mathcal{L}_u^{\alpha} = \mathcal{M}_u$ and $\mathcal{M}_{u}^{\alpha}=\mathcal{L}_{u}.$

Theorem 3.1. Let $0 < q \leq 1$. Then, the followings hold for all $k \in \mathbb{N}_1$:

(3.1)
$$\mathcal{BV}_{q}^{n\alpha} := \begin{cases} \mathcal{L}_{u} &, n = 2k - 1, \\ \mathcal{M}_{u} &, n = 2k, \end{cases}$$
$$\mathcal{LS}_{q}^{n\alpha} := \begin{cases} \mathcal{M}_{u} &, n = 2k - 1, \\ \mathcal{L}_{u} &, n = 2k. \end{cases}$$

Proof. Let $0 < q \leq 1$.

(i) $\mathcal{BV}_q^{\alpha} = \mathcal{L}_u$. $\mathcal{L}_u \subset \mathcal{BV}_q^{\alpha}$: Let us consider $a = (a_{kl}) \in \mathcal{L}_u$ and $x = (x_{kl}) \in \mathcal{BV}_q$. Then, we have

$$\sum_{k,l} |a_{kl} x_{kl}| \le \sum_{k,l} |a_{kl}| \sum_{i,j=0}^{k,l} |y_{ij}| \le ||a||_{\mathcal{L}_u} ||y||_{\mathcal{L}_u},$$

that is, $ax \in \mathcal{L}_u$. Hence, $a \in \mathcal{BV}_q^{\alpha}$. $\mathcal{BV}_q^{\alpha} \subset \mathcal{L}_u$: Suppose that $a \in \mathcal{BV}_q^{\alpha} \setminus \mathcal{L}_u$. Then, we have $ax \in \mathcal{L}_u$ for $x \in \mathcal{BV}_q$ but $a \notin \mathcal{L}_u$. If we consider $\mathbf{e} \in \mathcal{BV}_q$, then we obtain $a\mathbf{e} = a \notin \mathcal{L}_u$, that is, $a \notin \mathcal{BV}_q^{\alpha}$, a contradiction. Hence, a must be in \mathcal{L}_u . (ii) $\mathcal{LS}_q^{\alpha} = \mathcal{M}_u$.

 $\mathcal{M}_{u} \subset \mathcal{LS}_{q}^{\alpha}$: Take $a \in \mathcal{M}_{u}$ and $x \in \mathcal{LS}_{q} \subset \mathcal{L}_{u}$. Then, we get by

$$\|ax\|_{\mathcal{L}_u} \le \|a\|_{\infty} \|x\|_{\mathcal{L}_u}$$

that $a \in \mathcal{LS}_q^{\alpha}$.

 $\mathcal{LS}_q^{\alpha} \subset \dot{\mathcal{M}}_u$: Consider $a \in \mathcal{LS}_q^{\alpha} \setminus \mathcal{M}_u$. Since $a \notin \mathcal{M}_u$, there exist the subsequences of natural numbers $\{k(i)\}$ and $\{l(i)\}$, at least one of them is strictly increasing, such that

$$a_{k(i),l(i)} > (i+1)^{2/q}$$

for all $i \in \mathbb{N}$. If we define the sequence x by using the double sequence $\mathbf{d}^{\mathbf{kl}}$ as

$$x = \sum_{i} (i+1)^{-2/q} \mathbf{d}^{\mathbf{k}(\mathbf{i}),\mathbf{l}(\mathbf{i})},$$

then we obtain that

$$\sum_{i,j=0}^{k,l} x_{ij} := \begin{cases} (i+1)^{-2/q} &, k = k(i) \text{ and } l = l(i), \\ 0 &, k \neq k(i) \text{ and } l \neq l(i) \end{cases}$$

which leads us to the fact that

$$\sum_{k,l} \left| \sum_{i,j=0}^{k,l} x_{ij} \right|^q = \sum_i \frac{1}{(i+1)^2} < \infty,$$

i.e., $x \in \mathcal{LS}_q$. Nevertheless, by choosing k(i) + 1 < k(i+1) or l(i) + 1 < l(i+1) we get

$$\sum_{k,l} |a_{kl} x_{kl}| > \sum_{i} |a_{k(i),l(i)} x_{k(i),l(i)}|$$

>
$$\sum_{i} (i+1)^{2/q} |x_{k(i),l(i)}|$$

=
$$\sum_{i} 1 = \infty,$$

i.e., $a \notin \mathcal{LS}_q^{\alpha}$, a contradiction. Hence, $a \in \mathcal{M}_u$. Now, by using the facts $\mathcal{L}_u^{\alpha} = \mathcal{M}_u$ and $\mathcal{M}_u^{\alpha} = \mathcal{L}_u$, one can easily show that (3.1) holds with mathematical induction.

We give the following lemma which is needed in proving the $\beta(\vartheta)$ -dual of the spaces \mathcal{BV}_q and \mathcal{LS}_q .

Lemma 3.2.([17]) Let $0 < q \leq 1$. Then, a four-dimensional matrix $A = (a_{mnkl}) \in$ $(\mathcal{L}_q : \mathfrak{C}_{\vartheta})$ if and only if the following conditions hold:

(3.2)
$$\sup_{m,n,k,l\in\mathbb{N}}|a_{mnkl}|<\infty,$$

(3.3)
$$\exists \alpha_{kl} \in \mathbb{C} \ \ni \ \vartheta - \lim_{m,n \to \infty} a_{mnkl} = \alpha_{kl} \text{ for each } k, l \in \mathbb{N}$$

Now, we may give the beta-duals of the new spaces with respect to the ϑ convergence rule using the technique in [4] and [5] for the spaces of single sequences. Let us define the sets $\mathcal{BS}(u)$ and $\mathcal{CS}_{\vartheta}(u)$ via the double sequence u, as follows:

$$\begin{aligned} & \mathcal{BS}(u) &:= \quad \left\{ a = (a_{ij}) \in \Omega : au = (a_{ij}u_{ij})_{i,j \in \mathbb{N}} \in \mathcal{BS} \right\}, \\ & \mathcal{CS}_{\vartheta}(u) &:= \quad \left\{ a = (a_{ij}) \in \Omega : au = (a_{ij}u_{ij})_{i,j \in \mathbb{N}} \in \mathcal{CS}_{\vartheta} \right\}. \end{aligned}$$

Theorem 3.3. Let $0 < q \leq 1$. Then, the $\beta(\vartheta)$ -dual of the space \mathcal{BV}_q is $\mathcal{CS}_{bp}(\mathbf{b^{kl}})$.

Proof. We will determine the necessary and sufficient conditions in order to the sequence $t = (t_{mn})$ defined by

$$t_{mn} := \sum_{i,j=0}^{m,n} a_{ij} x_{ij}; \quad x = (x_{ij}) \in \mathcal{BV}_q$$

for all $m, n \in \mathbb{N}$ to be ϑ -convergent for a sequence $a = (a_{ij}) \in \Omega$.

Let us define the sequence $x = (x_{ij}) \in \mathcal{BV}_q$ by the relation (1.3) which gives $y = (y_{kl}) \in \mathcal{L}_q$. Then, we can write $t = (t_{mn})$ in the matrix form, as follows:

$$t_{mn} = \sum_{i,j=0}^{m,n} x_{ij} a_{ij} = \sum_{i,j=0}^{m,n} \left(\sum_{k,l=0}^{i,j} y_{kl} \right) a_{ij}$$
$$= \sum_{k,l=0}^{m,n} \left(\sum_{i,j=k,l}^{m,n} a_{ij} \right) y_{kl}$$
$$= \sum_{k,l=0}^{m,n} b_{mnkl} y_{kl} = (By)_{mn},$$

where the four-dimensional matrix $B = (b_{mnkl})$ is defined by

(3.4)
$$b_{mnkl} := \begin{cases} \sum_{i,j=k,l}^{m,n} a_{ij} & , \quad 0 \le k \le m \text{ and } 0 \le l \le n, \\ 0 & , \quad \text{otherwise} \end{cases}$$

for all $k, l, m, n \in \mathbb{N}$. Now, it is easy to see that $ax = (a_{ij}x_{ij}) \in \mathbb{CS}_{\vartheta}$ whenever $x = (x_{ij}) \in \mathbb{BV}_q$ if and only if $t = (t_{mn}) \in \mathbb{C}_{\vartheta}$ whenever $y = (y_{kl}) \in \mathcal{L}_q$ which leads us to the fact that $B \in (\mathcal{L}_q : \mathbb{C}_{\vartheta})$. Therefore, by using the conditions (3.2) and (3.3) of Lemma 3.2, we obtain the conditions

$$(3.5) \qquad \sup_{m,n,k,l\in\mathbb{N}} |b_{mnkl}| = \sup_{m,n,k,l\in\mathbb{N}} \left| \sum_{i,j=k,l}^{m,n} a_{ij} \right| = \sup_{m,n,k,l\in\mathbb{N}} \left| \sum_{i,j=0}^{m,n} a_{ij} \mathbf{b}_{ij}^{\mathbf{kl}} \right| < \infty,$$

$$(3.6) \qquad \vartheta - \lim_{m,n\to\infty} b_{mnkl} = \vartheta - \lim_{m,n\to\infty} \sum_{i=1}^{m,n} a_{ij} \mathbf{b}_{ij}^{\mathbf{kl}} \quad \text{exists}$$

for all
$$k, l \in \mathbb{N}$$
. By means of (3.5) and (3.6), we can say that $a\mathbf{b}^{\mathbf{kl}} = (a_{ij}\mathbf{b}_{ij}^{\mathbf{kl}}) \in \{\mathfrak{BS}, \mathfrak{CS}_{\vartheta}\}$, in other words, $a \in \mathfrak{BS}(\mathbf{b}^{\mathbf{kl}}) \cap \mathfrak{CS}_{\vartheta}(\mathbf{b}^{\mathbf{kl}}) = \mathfrak{CS}_{bp}(\mathbf{b}^{\mathbf{kl}})$.

This completes the proof. $a \in DS(\mathbf{b}^{-})$

Theorem 3.4. Let $0 < q \leq 1$. Then, the $\beta(\vartheta)$ -dual of the space \mathcal{LS}_q is the set \mathcal{M}_u .

Proof. We prove the theorem it by the similar way used in the proof of Theorem 3.3.

Consider $y = (y_{kl}) \in \mathcal{LS}_q$ by (1.2). Then, $x = (x_{kl}) \in \mathcal{L}_q$. Therefore, we obtain by applying Abel's generalized transformation for double sequences that

$$t_{mn} = \sum_{k,l=0}^{m,n} a_{kl} y_{kl}$$

=
$$\sum_{k,l=0}^{m-1,n-1} (\Delta_{11} a_{kl}) x_{kl} + \sum_{k=0}^{m-1} (\Delta_{10} a_{kn}) x_{kn} + \sum_{l=0}^{n-1} (\Delta_{01} a_{ml}) x_{ml} + a_{mn} x_{mn}$$

=
$$\sum_{k,l=0}^{m,n} c_{mnkl} x_{kl} = (Cx)_{mn},$$

where the four-dimensional matrix $C = (c_{mnkl})$ is defined by

$$c_{mnkl} := \begin{cases} \Delta_{11}a_{kl} &, \quad 0 \le k \le m-1 \text{ and } 0 \le l \le n-1 \\ \Delta_{10}a_{kn} &, \quad 0 \le k \le m-1 \text{ and } l = n, \\ \Delta_{01}a_{ml} &, \quad 0 \le l \le n-1 \text{ and } k = m, \\ a_{mn} &, \quad k = m \text{ and } l = n, \\ 0 &, \quad \text{otherwise} \end{cases}$$

for all $k, l, m, n \in \mathbb{N}$. By using similar approach in Theorem 3.3, $C \in (\mathcal{L}_q : \mathcal{C}_{\vartheta})$. Therefore, we get by Lemma 3.2 that

$$\vartheta - \lim_{m,n \to \infty} c_{mnkl} = \Delta_{11} a_{kl},$$

i.e., $\vartheta - \lim_{m,n\to\infty} c_{mnkl}$ always exists for each $k, l \in \mathbb{N}$. Also, from the condition

$$\sup_{m,n,k,l\in\mathbb{N}}|c_{mnkl}|<\infty$$

we have $(a_{mn}) \in \mathcal{M}_u$, $(\Delta_{01}a_{ml}) \in \mathcal{M}_u$, $(\Delta_{10}a_{kn}) \in \mathcal{M}_u$ and $(\Delta_{11}a_{kl}) \in \mathcal{M}_u$ for all $k, l, m, n \in \mathbb{N}$. It is easy to show that the condition $a = (a_{mn}) \in \mathcal{M}_u$ is sufficient for the matrix $C = (c_{mnkl})$ to be bounded for all $k, l, m, n \in \mathbb{N}$.

This completes the proof.

4. Matrix Transformations

In the present section, we characterize the classes $(\mathcal{L}_q : \mathcal{L}_{q_1})$, $(\mathcal{BV}_q : \mathcal{L}_{q_1})$, $(\mathcal{LS}_q : \mathcal{L}_{q_1})$, $(\mathcal{BV}_q : \mathcal{C}_{bp})$ and $(\mathcal{LS}_q : \mathcal{C}_{bp})$ together with a corollary characterizing some classes of four-dimensional matrices without proof; where $0 < q \leq 1$ and $0 < q_1 < \infty$.

Theorem 4.1. Let $0 < q \le 1$ and $0 < q_1 < \infty$. Then, $A = (a_{mnkl}) \in (\mathcal{L}_q : \mathcal{L}_{q_1})$ if and only if the following condition holds:

(4.1)
$$\sup_{k,l\in\mathbb{N}}\sum_{m,n}|a_{mnkl}|^{q_1}<\infty.$$

Proof. Let us consider $A = (a_{mnkl}) \in (\mathcal{L}_q : \mathcal{L}_{q_1})$ with $0 < q \leq 1$ and $0 < q_1 < \infty$. Then, Ax exists and belongs to \mathcal{L}_{q_1} for all $x \in \mathcal{L}_q$. Since $\mathbf{e}^{\mathbf{kl}} \in \mathcal{L}_q$, we obtain

$$\sum_{m,n} \left| \sum_{i,j} a_{mnij} e_{ij}^{kl} \right|^{q_1} = \sum_{m,n} |a_{mnkl}|^{q_1} < \infty$$

for all $k, l \in \mathbb{N}$. Hence, (4.1) is necessary.

Conversely, suppose that the condition (4.1) holds and $x = (x_{kl}) \in \mathcal{L}_q$. Since $\mathcal{L}_q \subset \mathcal{L}_u$ for $0 < q \leq 1$, x also belongs to \mathcal{L}_u . Thus, we have

$$\sum_{m,n} \left| \sum_{k,l} a_{mnkl} x_{kl} \right|^{q_1} \leq \sum_{m,n} \left(\sum_{k,l} |a_{mnkl}| |x_{kl}| \right)^{q_1}$$
$$\leq \sum_{m,n} \left(|a_{mnk_0 l_0}| \sum_{k,l} |x_{kl}| \right)^{q_1}$$
$$\leq ||x||^{q_1}_{\mathcal{L}_u} \sum_{m,n} |a_{mnk_0 l_0}|^{q_1} < \infty$$

for any fixed $k_0, l_0 \in \mathbb{N}$. Therefore, $A \in (\mathcal{L}_q : \mathcal{L}_{q_1})$. This completes the proof.

Theorem 4.2. Let $0 < q \le 1$ and $0 < q_1 < \infty$. Then, $A = (a_{mnkl}) \in (\mathcal{BV}_q : \mathcal{L}_{q_1})$ if and only if the following condition holds:

(4.2)
$$\sup_{k,l\in\mathbb{N}}\sum_{m,n}\left|\sum_{i,j=k,l}^{\infty}a_{mnij}\right|^{q_1}<\infty.$$

Proof. We obtain the necessity of the condition (4.2) by choosing the double sequence $\mathbf{b}^{\mathbf{kl}} \in \mathcal{BV}_q$.

Let us define $x = (x_{ij}) \in \mathcal{BV}_q$ by (1.3) which gives $y = (y_{kl}) \in \mathcal{L}_q$. Then, we derive by the *s*, *t*-th rectangular partial sum of the series $\sum_{i,j} a_{mnij} x_{ij}$ that

$$(Ax)_{mn}^{[s,t]} = \sum_{i,j=0}^{s,t} \left(\sum_{k,l=0}^{i,j} y_{kl}\right) a_{mnij}$$
$$= \sum_{k,l=0}^{s,t} \left(\sum_{i,j=k,l}^{s,t} a_{mnij}\right) y_{kl}$$

for all $m, n, s, t \in \mathbb{N}$. Therefore, we see by letting $s, t \to \infty$ that

$$(Ax)_{mn} = \sum_{k,l} \left(\sum_{i,j=k,l}^{\infty} a_{mnij} \right) y_{kl}$$

for all $m, n \in \mathbb{N}$. Thus, we get the desired result by the same way used in proving Theorem 4.1.

Theorem 4.3. Let $0 < q \leq 1$ and $0 < q_1 < \infty$. Then, $A = (a_{mnkl}) \in (\mathcal{LS}_q : \mathcal{L}_{q_1})$ if and only if the following conditions hold:

(4.3)
$$\sup_{k,l\in\mathbb{N}}\sum_{m,n}\left|\Delta_{11}^{kl}a_{mnkl}\right|^{q_1}<\infty,$$

(4.4)
$$\sup_{k,l\in\mathbb{N}}\sum_{m,n}\left|\Delta_{10}^{kl}a_{mnkl}\right|^{q_1}<\infty,$$

(4.5)
$$\sup_{k,l\in\mathbb{N}}\sum_{m,n}\left|\Delta_{01}^{kl}a_{mnkl}\right|^{q_1}<\infty,$$

(4.6)
$$\sup_{k,l\in\mathbb{N}}\sum_{m,n}|a_{mnkl}|^{q_1}<\infty.$$

Proof. Take $x = (x_{kl}) \in \mathcal{LS}_q$ by the relation $x = \Delta y$ which gives $y = (y_{kl}) \in \mathcal{L}_q$. Let us define the four-dimensional matrix $A^{st} = (a_{mnkl}^{st})$ by

$$a_{mnkl}^{st} := \begin{cases} a_{mnkl} & , \quad 0 \le k \le s \text{ and } 0 \le l \le t, \\ 0 & , \quad k > s \text{ or } l > t \end{cases}$$

for each $s,t \in \mathbb{N}$ and all $m, n, k, l \in \mathbb{N}$. By using generalized Abel transformation for double series, we obtain the equalities

$$(A^{st}x)_{mn} = \sum_{k,l=0}^{s,t} a_{mnkl}x_{kl}$$

$$= \sum_{k,l=0}^{s-1,t-1} (\Delta_{11}^{kl}a_{mnkl}) y_{kl} + \sum_{k=0}^{s-1} (\Delta_{10}^{kl}a_{mnkt}) y_{kt}$$

$$+ \sum_{l=0}^{t-1} (\Delta_{01}^{kl}a_{mnsl}) y_{sl} + a_{mnst}y_{st}$$

$$= (D^{st}y)_{mn}$$

which gives that $A^{st} \in (\mathcal{LS}_q : \mathcal{L}_{q_1})$ if and only if $D^{st} \in (\mathcal{L}_q : \mathcal{L}_{q_1})$, where the

four-dimensional matrix $D^{st} = (d_{mnkl}^{st})$ defined by

$$d_{mnkl}^{st} := \begin{cases} \Delta_{11}^{kl} a_{mnkl} &, \quad 0 \le k \le s - 1 \text{ and } 0 \le l \le t - 1, \\ \Delta_{10}^{kl} a_{mnkl} &, \quad 0 \le k \le s - 1 \text{ and } l = t, \\ \Delta_{01}^{kl} a_{mnkl} &, \quad 0 \le l \le t - 1 \text{ and } k = s, \\ a_{mnkl} &, \quad k = s \text{ and } l = t, \\ 0 &, \quad k > s \text{ or } l > t \end{cases}$$

for each $s, t \in \mathbb{N}$ and all $m, n, k, l \in \mathbb{N}$. Now, one can easily derive the conditions (4.3)-(4.6) for all $s, t \in \mathbb{N}$.

By using Theorem 4.2 and Theorem 4.3, we can give the following two theorems without proof.

Theorem 4.4. Let $0 < q \leq 1$. Then, $A = (a_{mnkl}) \in (\mathcal{BV}_q : \mathcal{C}_\vartheta)$ if and only if the following conditions hold:

(4.7)
$$\sup_{m,n,k,l\in\mathbb{N}} \left| \sum_{i,j=k,l}^{\infty} a_{mnij} \right| < \infty,$$

(4.8)
$$\vartheta - \lim_{m,n\to\infty} \sum_{i,j=k,l}^{\infty} a_{mnij} \text{ exists for all } k,l \in \mathbb{N}.$$

Theorem 4.5. Let $0 < q \leq 1$. Then, $A = (a_{mnkl}) \in (\mathcal{LS}_q : \mathcal{C}_\vartheta)$ if and only if the conditions (3.2) and (3.3) hold.

Theorem 4.6. Suppose that the elements of the four-dimensional infinite matrices $E = (e_{mnkl})$ and $F = (f_{mnkl})$ are connected with the relation

(4.9)
$$e_{klij} = \sum_{m,n=0}^{k,l} f_{mnij}$$

for all $i, j, k, l, m, n \in \mathbb{N}$ and λ, μ be any given two double sequence spaces. Then, $E \in (\lambda : \mu_{\Delta})$ if and only if $F \in (\lambda : \mu)$ and also $F \in (\lambda : \mu_S)$ if and only if $E \in (\lambda : \mu)$.

Proof. Let $x = (x_{ij}) \in \lambda$. By using (4.9), we derive that

$$\sum_{i,j=0}^{s,t} e_{klij} x_{ij} = \sum_{m,n=0}^{k,l} \sum_{i,j=0}^{s,t} f_{mnij} x_{ij}$$

for all $k, l, m, n, s, t \in \mathbb{N}$ and by letting $s, t \to \infty$ that

$$\sum_{i,j} e_{klij} x_{ij} = \sum_{m,n=0}^{k,l} \sum_{i,j} f_{mnij} x_{ij}$$

which lead us to the fact

(4.10)
$$(Ex)_{kl} = \sum_{m,n=0}^{k,l} (Fx)_{mn}$$

for all $k, l \in \mathbb{N}$. Then, it is easy to see by (4.10) that $Ex \in \mu_{\Delta}$ whenever $x \in \lambda$ if and only if $Fx \in \mu$ whenever $x \in \lambda$ and similarly, $Fx \in \mu_S$ whenever $x \in \lambda$ if and only if $Ex \in \mu$ whenever $x \in \lambda$.

This completes the proof.

As a consequence of Theorem 4.6, we can give the following corollary.

Corollary 4.7. Let $0 < q \leq 1$, $0 < q_1 < \infty$ and the elements of the fourdimensional matrices $E = (e_{mnkl})$ and $F = (f_{mnkl})$ are connected with the relation (4.9). Then, the following statements hold:

- (i) $E = (e_{mnkl}) \in (\mathcal{L}_q : \mathcal{C}_{\vartheta}(\Delta))$ if and only if the conditions (3.2) and (3.3) hold with f_{mnkl} instead of a_{mnkl} .
- (ii) $F = (e_{mnkl}) \in (\mathcal{L}_q : \mathfrak{CS}_{\vartheta})$ if and only if the conditions (3.2) and (3.3) hold with e_{mnkl} instead of a_{mnkl} .
- (iii) $E = (e_{mnkl}) \in (\mathcal{L}_q : \mathcal{BV}_{q_1})$ if and only if the condition (4.1) holds with f_{mnkl} instead of a_{mnkl} .
- (iv) $F = (e_{mnkl}) \in (\mathcal{L}_q : \mathcal{L}\mathfrak{S}_{q_1})$ if and only if the condition (4.1) holds with e_{mnkl} instead of a_{mnkl} .
- (v) $E = (e_{mnkl}) \in (\mathcal{BV}_q : \mathcal{BV}_{q_1})$ if and only if the condition (4.2) holds with f_{mnkl} instead of a_{mnkl} .
- (vi) $F = (e_{mnkl}) \in (\mathcal{BV}_q : \mathcal{LS}_{q_1})$ if and only if the condition (4.2) holds with e_{mnkl} instead of a_{mnkl} .
- (vii) $E = (e_{mnkl}) \in (\mathcal{LS}_q : \mathcal{BV}_{q_1})$ if and only if the conditions (4.3)-(4.6) hold with f_{mnkl} instead of a_{mnkl} .
- (viii) $F = (e_{mnkl}) \in (\mathcal{LS}_q : \mathcal{LS}_{q_1})$ if and only if the conditions (4.3)-(4.6) hold with e_{mnkl} instead of a_{mnkl} .
- (ix) $E = (e_{mnkl}) \in (\mathcal{BV}_q : \mathcal{C}_{\vartheta}(\Delta))$ if and only if the conditions (4.7) and (4.8) hold with f_{mnkl} instead of a_{mnkl} .
- (x) $F = (e_{mnkl}) \in (\mathcal{BV}_q : \mathcal{CS}_{\vartheta})$ if and only if the conditions (4.7) and (4.8) hold with e_{mnkl} instead of a_{mnkl} .
- (xi) $E = (e_{mnkl}) \in (\mathcal{LS}_q : \mathcal{C}_{\vartheta}(\Delta))$ if and only if the conditions (3.2) and (3.3) hold with f_{mnkl} instead of a_{mnkl} .
- (xii) $F = (e_{mnkl}) \in (\mathcal{LS}_q : \mathbb{CS}_{\vartheta})$ if and only if the conditions (3.2) and (3.3) hold with e_{mnkl} instead of a_{mnkl} .

5. Conclusion

As the domain of backward difference matrix in the space ℓ_p of absolutely *p*-summable sequences, the space bv_p of *p*-bounded variation single sequences were studied in the case $1 by Başar and Altay [5], and in the case <math>0 by Altay and Başar [3]. Later, by introducing the space <math>\hat{\ell}_p$ as the domain of double band matrix B(r, s) in the space ℓ_p Kirişçi and Başar [15] generalized the space bv_p . Besides this, the space bv_p was extended to the paranormed space bv(u, p) of single sequences by Başar et al. [6].

Recently, the space \mathcal{L}_q of absolutely q-summable double sequences with q > 1was introduced by Başar and Sever [9], and some complementary results related to the space \mathcal{L}_q have been recently given by Yeşilkayagil and Başar [17]. We introduce the space $\mathcal{L}S_q$ as the domain of four dimensional summation matrix S in the space \mathcal{L}_q with $0 < q < \infty$. It is natural to expect the extension of the space $\mathcal{L}S_q$ to the paranormed space $\mathcal{L}S_q(t)$ as a generalization of the space $\overline{\ell(p)}$ derived by Choudhary and Misra [12] as the domain of the two dimensional summation matrix in the paranormed space $\ell(p)$ of single sequences. Our main goal is to investigate the space \mathcal{BV}_q of q-bounded variation double sequences and is to extend to the results obtained for the space bv_q . Of course, it is worth mentioning here that the domain of the backward difference matrix Δ in the paranormed space $\ell(p)$ and also the investigation of the results for double sequences corresponding to Başar et al. [6] remains open.

Additionally, one can generalize the main results of the present paper related to the space \mathcal{BV}_q by using the four dimensional triangle matrix $B(r, s, t, u) = \{b_{mnkl}(r, s, t, u)\}$ instead of the four dimensional backward difference matrix Δ , where $r, s, t, u \in \mathbb{R}$ with $r, t \neq 0$ and

$$b_{mnkl}(r,s,t,u) := \begin{cases} rt & , & (k,l) = (m,n), \\ st & , & (k,l) = (m-1,n), \\ ru & , & (k,l) = (m,n-1), \\ su & , & (k,l) = (m-1,n-1), \\ 0 & , & \text{otherwise} \end{cases}$$

for all $m, n, k, l \in \mathbb{N}$. Furthermore, following Başar and Çapan [7, 8] and Çapan and Başar [10, 11], one can also extend the main results of this paper to the paranormed case.

References

 C. R. Adams, On non-factorable transformations of double sequences, Proc. Natl. Acad. Sci. USA., 19(5)(1933), 564–567.

- [2] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(2005), 70–90.
- [3] B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p, (0 1–11.
- [4] F. Başar and B. Altay, Matrix mappings on the space bs(p) and its α-, β-, and γ-duals, Aligarh Bull. Math., 21(2002), 79–91.
- [5] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(2003), 136–147.
- [6] F. Başar, B. Altay and M. Mursaleen, Some generalizations of the space bv_p of pbounded variation sequences, Nonlinear Anal., **68(2)**(2008), 273–287.
- [7] F. Başar and H. Çapan, On the paranormed spaces of regularly convergent double sequences, Results Math., 72(1-2)(2017), 893–906.
- [8] F. Başar and H. Çapan, On the paranormed space $M_u(t)$ of double sequences, Bol. Soc. Parana. Mat., **37**(3)(2019), 99–111.
- [9] F. Başar and Y. Sever, The space \mathcal{L}_q of double sequences, Math. J. Okayama Univ., **51**(2009), 149–157.
- [10] H. Çapan and F. Başar, Some paranormed difference spaces of double sequences, Indian J. Math., 58(3)(2016), 405–427.
- [11] H. Çapan and F. Başar, On the paranormed space $\mathcal{L}(t)$ of double sequences, Filomat, **32(3)**(2018), 1043–1053.
- [12] B. Choudhary and S.K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5)(1993), 291–301.
- [13] R. C. Cooke, *Infinite matrices and sequence spaces*, Macmillan and Co. Limited, London, 1950.
- [14] S. Demiriz and O. Duyar, Domain of difference matrix of order one in some spaces of double sequences, Gulf J. Math., 3(3)(2015), 85–100.
- [15] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60(5)(2010), 1299–1309.
- [16] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289–321.
- [17] M. Yeşilkayagil and F. Başar, Domain of Riesz mean in the space \mathcal{L}_s^* , Filomat, **31(4)**(2017), 925–940.
- [18] M. Zeltser, Weak sequential completeness of β-duals of double sequence spaces, Anal. Math., 27(3)(2001), 223–238.