On Some Spaces Isomorphic to the Space of Absolutely q summable Double Sequences

Hüsamettin Çapan
Graduate School of Natural and Applied Sciences, İstanbul University, Beyazat Campus, 34134 - Vezneciler/İstanbul, Turkey
e-mail: husamettincapan@gmail.com
Feyzi Başar*
İnönü University, 44280-Malatya, Turkey
Current address: KısıklıMah. Alim Sok. Alim Apt. No: 7/6, 34692 - Üsküdar/
İstanbul, Turkey
e-mail: feyzibasar@gmail.com

Abstract. Let $0<q<\infty$. In this study, we introduce the spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ of q-bounded variation double sequences and q-summable double series as the domain of four-dimensional backward difference matrix Δ and summation matrix S in the space \mathcal{L}_{q} of absolutely q-summable double sequences, respectively. Also, we determine their α - and β-duals and give the characterizations of some classes of four-dimensional matrix transformations in the case $0<q \leq 1$.

1. Introduction

We denote the set of all complex valued double sequences by Ω which forms a vector space with coordinatewise addition and scalar multiplication. Any vector subspace of Ω is called as a double sequence space.

By \mathcal{M}_{u}, we denote the space of all bounded double sequences, that is

$$
\mathcal{M}_{u}:=\left\{x=\left(x_{k l}\right) \in \Omega:\|x\|_{\infty}=\sup _{k, l \in \mathbb{N}}\left|x_{k l}\right|<\infty\right\},
$$

which is a Banach space with the norm $\|\cdot\|_{\infty} ;$ where $\mathbb{N}=\{0,1,2, \ldots\}$.

* Corresponding Author.

Received July 15, 2017; accepted June 6, 2018.
2010 Mathematics Subject Classification: 46A45, 40C05.
Key words and phrases: summability theory, double sequence, difference sequence space, double series, alpha-dual, beta-dual, matrix domain of 4-dimensional matrices, matrix transformations.

If for every $\varepsilon>0$ there exists $N=N(\varepsilon) \in \mathbb{N}$ and $L \in \mathbb{C}$ such that $\mid x_{k l}$ $L \mid<\varepsilon$ for all $k, l>N$, then we call that the double sequence $x=\left(x_{k l}\right) \in \Omega$ is convergent to L in the Pringsheim's sense (shortly, p-convergent to L) and write $p-\lim _{k, l \rightarrow \infty} x_{k l}=L$; where \mathbb{C} denotes the complex field (see Pringsheim [16]). We denote the space of all p-convergent double sequences by \mathfrak{C}_{p}.

It is well-known that in single sequence spaces a convergent single sequence is bounded. But, in double sequence spaces a p-convergent double sequence may be unbounded. A double sequence $x \in \mathcal{C}_{p} \cap \mathcal{M}_{u}$ is called boundedly convergent to L in the Pringsheim's sense (shortly, bp-convergent to L), where L is the p-limit of x. We denote the space of such sequences by $\mathfrak{C}_{b p}$.

Throughout the text the summation without limits runs from 0 to ∞, for example $\sum_{k, l} x_{k l}$ means that $\sum_{k, l=0}^{\infty} x_{k l}$, and unless stated otherwise, we assume that ϑ denotes any of the symbols p or $b p$.

We denote the space of all absolutely q-summable double sequences by \mathcal{L}_{q}, that is,

$$
\mathcal{L}_{q}:=\left\{x=\left(x_{k l}\right) \in \Omega: \sum_{k, l}\left|x_{k l}\right|^{q}<\infty\right\}, \quad(0<q<\infty) .
$$

If we take $q=1$, we obtain the space \mathcal{L}_{u} of all absolutely summable double sequences.

Let $\mathbf{e}^{\mathbf{k l}}=\left(\mathbf{e}_{i j}^{\mathrm{kl}}\right)$ be a double sequence defined by

$$
\mathbf{e}_{i j}^{\mathbf{k l}}:= \begin{cases}1, & (i, j)=(k, l), \\ 0, & (i, j) \neq(k, l)\end{cases}
$$

for all $i, j, k, l \in \mathbb{N}$ and $\mathbf{e}=\sum_{k, l} \mathbf{e}^{\mathbf{k l}}$ (coordinatewise sums), is a double sequence that all elements are one. All considered spaces are supposed to contain Φ, the set of all finitely non-zero double sequences; i.e.,

$$
\begin{aligned}
\Phi & :=\left\{x=\left(x_{k l}\right) \in \Omega: \exists N \in \mathbb{N} \forall(k, l) \in \mathbb{N}^{2} \backslash[0, N]^{2}, \quad x_{k l}=0\right\} \\
& :=\operatorname{span}\left\{\mathbf{e}^{\mathbf{k} 1}: k, l \in \mathbb{N}\right\} .
\end{aligned}
$$

Let λ be a space of double sequences, converging with respect to some linear convergence rule $\vartheta-\lim : \lambda \rightarrow \mathbb{C}$. The sum of a double series $\sum_{i, j} x_{i j}$ with respect to this rule is defined by $\vartheta-\sum_{i, j} x_{i j}=\vartheta-\lim _{m, n \rightarrow \infty} \sum_{i, j=0}^{m, n} x_{i j}$. Then, the α-dual λ^{α} and the $\beta(\vartheta)$-dual $\lambda^{\beta(\vartheta)}$ of a double sequence space λ are respectively defined by

$$
\begin{aligned}
\lambda^{\alpha} & :=\left\{a=\left(a_{k l}\right) \in \Omega: \sum_{k, l}\left|a_{k l} x_{k l}\right|<\infty \text { for all } x=\left(x_{k l}\right) \in \lambda\right\}, \\
\lambda^{\beta(\vartheta)} & :=\left\{a=\left(a_{k l}\right) \in \Omega: \vartheta-\sum_{k, l} a_{k l} x_{k l} \text { exists for all } x=\left(x_{k l}\right) \in \lambda\right\} .
\end{aligned}
$$

It is easy to see for any two spaces λ and μ of double sequences that $\mu^{\alpha} \subset \lambda^{\alpha}$ whenever $\lambda \subset \mu$.

Let λ and μ be two double sequence spaces, and $A=\left(a_{m n k l}\right)$ be any fourdimensional complex infinite matrix. Then, we say that A defines a matrix mapping from λ into μ and we write $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k l}\right) \in \lambda$ the A-transform $A x=\left\{(A x)_{m n}\right\}_{m, n \in \mathbb{N}}$ of x exists and belongs to μ; where

$$
\begin{equation*}
(A x)_{m n}=\vartheta-\sum_{k, l} a_{m n k l} x_{k l} \text { for each } m, n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

We define the ϑ-summability domain $\lambda_{A}^{(\vartheta)}$ of A in a space λ of double sequences by $\lambda_{A}^{(\vartheta)}:=\left\{x=\left(x_{k l}\right) \in \Omega: A x=\left(\vartheta-\sum_{k, l} a_{m n k l} x_{k l}\right)_{m, n \in \mathbb{N}}\right.$ exists and is in $\left.\lambda\right\}$.

We say with the notation (1.1) that A maps the space λ into the space μ if $\lambda \subset \mu_{A}^{(\vartheta)}$ and we denote the set of all four dimensional matrices transforming the space λ into the space μ by $(\lambda: \mu)$. Thus, $A=\left(a_{m n k l}\right) \in(\lambda: \mu)$ if and only if the double series on the right side of (1.1) converges in the sense of ϑ for each $m, n \in \mathbb{N}$, i.e, $A_{m n} \in \lambda^{\beta(\vartheta)}$ for all $m, n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x \in \mu$ for all $x \in \lambda$; where $A_{m n}=\left(a_{m n k l}\right)_{k, l \in \mathbb{N}}$ for all $m, n \in \mathbb{N}$. In this paper, we only consider $b p$-summability domain.

For all $k, l, m, n \in \mathbb{N}$, we say that $A=\left(a_{m n k l}\right)$ is a triangular matrix if $a_{m n k l}=0$ for $k>m$ or $l>n$ or both, [1]. By following Adams [1], we also say that a triangular matrix $A=\left(a_{m n k l}\right)$ is called a triangle if $a_{m n m n} \neq 0$ for all $m, n \in \mathbb{N}$. Referring to Cooke [13, Remark (a), p. 22], one can conclude that every triangle matrix has an unique inverse which is also a triangle.

We shall write throughout for simplicity in notation for all $k, l, m, n \in \mathbb{N}$ that

$$
\begin{aligned}
& \Delta_{10} a_{k l}=a_{k l}-a_{k+1, l}, \quad \Delta_{10}^{k l} a_{m n k l}=a_{m n k l}-a_{m n, k+1, l}, \\
& \Delta_{01} a_{k l}=a_{k l}-a_{k, l+1}, \quad \Delta_{01}^{k l} a_{m n k l}=a_{m n k l}-a_{m n k, l+1}, \\
& \Delta_{11} a_{k l}=\Delta_{10}\left(\Delta_{01} a_{k l}\right), \quad \Delta_{11}^{k l} a_{m n k l}=\Delta_{10}^{k l}\left(\Delta_{01}^{k l} a_{m n k l}\right), \\
& =\Delta_{01}\left(\Delta_{10} a_{k l}\right), \quad=\Delta_{01}^{k l}\left(\Delta_{10}^{k l} a_{m n k l}\right) .
\end{aligned}
$$

The four dimensional backward difference matrix $\Delta=\left(d_{m n k l}\right)$ is defined by

$$
d_{m n k l}:=\left\{\begin{array}{cll}
(-1)^{m+n-(k+l)} & , \quad m-1 \leq k \leq m \quad \text { and } \quad n-1 \leq l \leq n \\
0 & , & \text { otherwise }
\end{array}\right.
$$

for all $k, l, m, n \in \mathbb{N}$. We suppose that the terms of the double sequences $x=\left(x_{k l}\right)$ and $y=\left(y_{k l}\right)$ are connected with the relation

$$
y_{k l}=(\Delta x)_{k l}=\left\{\begin{array}{cl}
x_{00} & , \quad k, l=0 \tag{1.2}\\
x_{0 l}-x_{0, l-1} & , \quad k=0 \text { and } l \geq 1 \\
x_{k 0}-x_{k-1,0} & , \quad l=0 \text { and } k \geq 1 \\
x_{k-1, l-1}-x_{k-1, l} \\
-x_{k, l-1}+x_{k l} & , \quad k, l \geq 1
\end{array}\right.
$$

for all $k, l \in \mathbb{N}$. Additionally, a direct calculation gives the inverse $\Delta^{-1}=S=$ ($s_{m n k l}$) of the matrix Δ as follows:

$$
s_{m n k l}:=\left\{\begin{array}{lll}
1 & , \quad 0 \leq k \leq m \quad \text { and } \quad 0 \leq l \leq n \\
0 & , & \text { otherwise }
\end{array}\right.
$$

for all $k, l, m, n \in \mathbb{N}$. Here, we can redefine the relation between the double sequences $x=\left(x_{k l}\right)$ and $y=\left(y_{k l}\right)$ by summation matrix S as follows:

$$
\begin{equation*}
x_{k l}=(S y)_{k l}=\sum_{i, j=0}^{k, l} y_{i j} \tag{1.3}
\end{equation*}
$$

for all $k, l \in \mathbb{N}$.
It is worth mentioning here that Altay and Başar [2] have defined the spaces $\mathcal{B S}$ and $\mathcal{C S}_{\vartheta}$ by using summation matrix S and also Demiriz and Duyar [14] recently defined the spaces $\mathcal{M}_{u}(\Delta)$ and $\mathcal{C}_{\vartheta}(\Delta)$ by using backward difference matrix Δ, as folllows:

$$
\begin{aligned}
\mathcal{B S} & :=\left\{x=\left(x_{k l}\right) \in \Omega: \sup _{k, l \in \mathbb{N}}\left|(S x)_{k l}\right|<\infty\right\}, \\
\mathcal{C S}_{\vartheta} & :=\left\{x=\left(x_{k l}\right) \in \Omega: S x=\left\{(S x)_{k l}\right\}_{k, l \in \mathbb{N}} \in \mathcal{C}_{\vartheta}\right\}, \\
\mathcal{M}_{u}(\Delta) & :=\left\{x=\left(x_{k l}\right) \in \Omega: \sup _{k, l \in \mathbb{N}}\left|(\Delta x)_{k l}\right|<\infty\right\}, \\
\mathcal{C}_{\vartheta}(\Delta) & :=\left\{x=\left(x_{k l}\right) \in \Omega: \Delta x=\left\{(\Delta x)_{k l}\right\}_{k, l \in \mathbb{N}} \in \mathcal{C}_{\vartheta}\right\} .
\end{aligned}
$$

In this study, we introduce the spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ of all double sequences whose Δ-transforms and S-transforms are absolutely q-summable, that is,

$$
\begin{aligned}
\mathcal{B} \mathcal{V}_{q} & :=\left\{x=\left(x_{k l}\right) \in \Omega: \sum_{k, l}\left|(\Delta x)_{k l}\right|^{q}<\infty\right\}, \\
\mathcal{L} \mathcal{S}_{q} & :=\left\{x=\left(x_{i j}\right) \in \Omega: \sum_{k, l}\left|(S x)_{k l}\right|^{q}<\infty\right\} .
\end{aligned}
$$

One can easily observe that the sets $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ are the domain of the backward difference matrix Δ and summation matrix S in the space \mathcal{L}_{q} which are q-normed spaces with

$$
\| x \widehat{\|}_{\mathcal{B} \mathcal{V}_{q}}=\sum_{k, l}\left|(\Delta x)_{k l}\right|^{q} \quad \text { and } \quad \| x \widehat{\|}_{\mathcal{L} \mathcal{S}_{q}}=\sum_{k, l}\left|(S x)_{k l}\right|^{q}
$$

for $0<q \leq 1$, and normed spaces with

$$
\|x\|_{\mathcal{B} \mathcal{V}_{q}}=\left[\sum_{k, l}\left|(\Delta x)_{k l}\right|^{q}\right]^{1 / q} \quad \text { and } \quad\|x\|_{\mathcal{L} \mathcal{S}_{q}}=\left[\sum_{k, l}\left|(S x)_{k l}\right|^{q}\right]^{1 / q}
$$

for $1<q<\infty$, respectively. In the special case $q=1$, we obtain the space $\mathcal{B} \mathcal{V}=\left(\mathcal{L}_{u}\right)_{\Delta}$, defined by Altay and Başar in [2], and the space $\mathcal{L S}=\left(\mathcal{L}_{u}\right)_{S}$.

2. New Sequence Spaces

In the present section, we examine some topological properties of the spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$, and also give important inclusion theorems related to them.
Theorem 2.1. The spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ are linearly isomorphic to the space \mathcal{L}_{q}, where $0<q<\infty$.
Proof. We will only show $\mathcal{B} \mathcal{V}_{q} \cong \mathcal{L}_{q}$ with $0<q<\infty$.
Let $0<q<\infty$. With the notation of (1.2), consider the transformation T from $\mathcal{B} \mathcal{V}_{q}$ to \mathcal{L}_{q} defined by $x \mapsto T x=\Delta x$. Then, clearly T is linear and injective. Let $y \in \mathcal{L}_{q}$ and define the sequence $x=S y$ as in (1.3). Then, we have $\Delta x=\Delta(S y)=y$ which gives $\|x\|_{\mathcal{B} \mathcal{V}_{q}}=\|y\|_{\mathcal{L}_{q}}$ with $0<q \leq 1$ and $\|x\|_{\mathcal{B} \mathcal{V}_{q}}=\|y\|_{\mathcal{L}_{q}}$ with $1<q<\infty$, i.e., $x \in \mathcal{B} \mathcal{V}_{q}$. Hence, T is surjective and is norm preserving.

This completes the proof.
Since $\mathcal{B} \mathcal{V}_{q} \cong \mathcal{L}_{q}$ and $\mathcal{L} \mathcal{S}_{q} \cong \mathcal{L}_{q}$, we can give following theorem without proof.
Theorem 2.2. The sets $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ are linear spaces with the coordinatewise addition and scalar multiplication, and the following statements hold:
(i) Let $0<q<1$. Then, $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L S}_{q}$ are complete q-normed spaces with $\| \cdot \widehat{\|}_{\mathcal{B} \mathcal{V}_{q}}$ and $\| \cdot \widehat{\|}_{\mathcal{L} \mathcal{S}_{q}}$, respectively.
(ii) Let $1 \leq q<\infty$. Then, $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ are Banach spaces with $\|\cdot\|_{\mathcal{B} \mathcal{V}_{q}}$ and $\|\cdot\|_{\mathcal{L} \mathcal{S}_{q}}$, respectively.

Now, we define the double sequences $\mathbf{b}^{\mathbf{k l}}=\left(\mathbf{b}_{i j}^{\mathbf{k l}}\right)$ and $\mathbf{d}^{\mathbf{k l}}=\left(\mathbf{d}_{i j}^{\mathbf{k l}}\right)$ by

$$
\begin{aligned}
\mathbf{b}_{i j}^{\mathbf{k l}} & := \begin{cases}1, & i \geq k \text { and } j \geq l \\
0 & ,\end{cases} \\
\mathbf{d}_{i j}^{\mathbf{k} \mathbf{l}} & :=\left\{\begin{array}{rl}
1 & , \\
-1 & (i, j)=(k, l),(k+1, l+1) \\
0 & ,
\end{array},\right. \text { otherwise }
\end{aligned},
$$

for all $i, j, k, l \in \mathbb{N}$. Then it is obvious that the sets $\left\{\mathbf{e}, \mathbf{e}^{\mathbf{k l}}, \mathbf{b}^{\mathbf{k l}}, \mathbf{d}^{\mathbf{k l}} ; k, l \in \mathbb{N}\right\} \subset \mathcal{B} \mathcal{V}_{q}$ and $\left\{\mathbf{d}^{\mathbf{k l}} ; k, l \in \mathbb{N}\right\} \subset \mathcal{L} \mathcal{S}_{q}$. These double sequences will be used in the rest of the study.

Definition 2.3.([18, p. 225]) A double sequence space λ is said to be monotone if $x u=\left(x_{k l} u_{k l}\right) \in \lambda$ (coordinatwise product) for every $x=\left(x_{k l}\right) \in \lambda$ and $u=\left(u_{k l}\right) \in$ $\{0,1\}^{\mathbb{N} \times \mathbb{N}}$, where $\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ denotes the set of all double sequences consisting of 0 's and 1's.

If λ is monotone, then $\lambda^{\alpha}=\lambda^{\beta(\vartheta)}$, but the converse is not true in general.
Theorem 2.4. The spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L \mathcal { S } _ { q }}$ are not monotone, where $0<q<\infty$.
Proof. Let λ be a double sequence space. To show λ is not monotone, we must find a sequence $u=\left(u_{k l}\right) \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ such that $x u=\left(x_{k l} u_{k l}\right) \notin \lambda$ for a sequence $x=\left(x_{k l}\right) \in \lambda$.

Let us define the double sequence $u=\left(u_{k l}\right)$ by

$$
u_{k l}:= \begin{cases}0, & k \text { or } l \text { odd, } \\ 1, & \text { otherwise }\end{cases}
$$

for all $k, l \in \mathbb{N}$. Then $\mathbf{e} \in \mathcal{B} \mathcal{V}_{q}$, but $\mathbf{e} u=u \notin \mathcal{B} \mathcal{V}_{q}$. Hence, the space $\mathcal{B} \mathcal{V}_{q}$ is not monotone.

To show $\mathcal{L} \mathcal{S}_{q}$ is not monotone take $u=\mathbf{e}^{\mathbf{k} \mathbf{l}}$. Then, $\mathbf{d}^{\mathbf{k} \mathbf{l}} \in \mathcal{L} \mathcal{S}_{q}$, but $\mathbf{d}^{\mathrm{kl}} \mathbf{e}^{\mathbf{k} \mathbf{l}}=$ $\mathrm{e}^{\mathrm{kl}} \notin \mathcal{L} \mathcal{S}_{q}$.
Theorem 2.5. Let $0<q<\infty$. Then, the inclusion $\mathcal{L}_{q} \subset \mathcal{B} \mathcal{V}_{q}$ is strict.
Proof. Let $x=\left(x_{k l}\right) \in \mathcal{L}_{q}$. Then, by neglecting negative indexed terms of x, we obtain

$$
\begin{aligned}
\| x \widehat{\|}_{\mathcal{B} v_{q}} & =\sum_{k, l}\left|x_{k-1, l-1}-x_{k-1, l}-x_{k, l-1}+x_{k l}\right|^{q} \\
& \leq 4 \sum_{k, l}\left|x_{k l}\right|^{q}=4 \| x \widehat{\|}_{\mathcal{L}_{q}}
\end{aligned}
$$

for $0<q \leq 1$ and by using Minkowski's inequality

$$
\begin{aligned}
\|x\|_{\mathcal{B} \mathcal{V}_{q}} & =\left(\sum_{k, l}\left|x_{k-1, l-1}-x_{k-1, l}-x_{k, l-1}+x_{k l}\right|^{q}\right)^{1 / q} \\
& \leq 4\left(\sum_{k, l}\left|x_{k l}\right|^{q}\right)^{1 / q}=4\|x\|_{\mathcal{L}_{q}}
\end{aligned}
$$

for $1<q<\infty$, that is, $x \in \mathcal{B} \mathcal{V}_{q}$ for $0<q<\infty$. Also, by $\mathbf{e} \in \mathcal{B} \mathcal{V}_{q} \backslash \mathcal{L}_{q}$, the inclusion $\mathcal{L}_{q} \subset \mathcal{B} \mathcal{V}_{q}$ is strict.

Since backward difference matrix Δ and summation matrix S are opposite working matrices we can give the following inclusion theorem without proof.

Theorem 2.6. Let $0<q<\infty$. Then, the inclusion $\mathcal{L} \mathcal{S}_{q} \subset \mathcal{L}_{q}$ is strict.
Theorem 2.7. Let $1<q<\infty$. Then, the sets \mathcal{L}_{q} and $\mathcal{B} \mathcal{V}$ do not contain each other.
Proof. It is immediate that $\mathbf{e} \in \mathcal{B} \mathcal{V} \backslash \mathcal{L}_{q}$ and $\mathbf{e}^{\mathbf{k l}} \in \mathcal{B} \mathcal{V} \cap \mathcal{L}_{q}$. Consider the sequence $x=\left(x_{k l}\right)$ defined by

$$
x_{k l}:=\frac{(-1)^{k+l}}{(k+1)(l+1)}
$$

for all $k, l \in \mathbb{N}$. Since $q>1$, the series

$$
\sum_{k, l}\left|x_{k l}\right|^{q}=\sum_{k, l} \frac{1}{[(k+1)(l+1)]^{q}}
$$

is convergent, that is, $x \in \mathcal{L}_{q}$. Nevertheless, we get from

$$
(\Delta x)_{k l}=\left\{\begin{array}{cl}
1 & , \quad k, l=0 \tag{2.1}\\
(-1)^{l} \frac{2 l+1}{l(l+1)} & , \quad k=0 \text { and } l \geq 1 \\
(-1)^{k} \frac{2 k+1}{k(k+1)} & , \quad l=0 \text { and } k \geq 1 \\
(-1)^{k+l} \frac{(k+1)(l+1)+(k+1) l+k(l+1)+k l}{k l(k+1)(l+1)} & , \quad k, l \geq 1
\end{array}\right.
$$

that the series

$$
\begin{aligned}
\sum_{k, l}\left|(\Delta x)_{k l}\right|= & 1+\sum_{l=1}^{\infty} \frac{2 l+1}{l(l+1)}+\sum_{k=1}^{\infty} \frac{2 k+1}{k(k+1)} \\
& +\sum_{k, l=1}^{\infty} \frac{(k+1)(l+1)+(k+1) l+k(l+1)+k l}{k l(k+1)(l+1)} \\
\geq & 1+\sum_{l=1}^{\infty} \frac{l+1}{l(l+1)}+\sum_{k=1}^{\infty} \frac{k+1}{k(k+1)}+\sum_{k, l=1}^{\infty} \frac{(k+1(l+1)}{k l(k+1)(l+1)} \\
= & 1+\sum_{l=1}^{\infty} \frac{1}{l}+\sum_{k=1}^{\infty} \frac{1}{k}+\sum_{k, l=1}^{\infty} \frac{1}{k l}
\end{aligned}
$$

diverges which gives the fact that $x \notin \mathcal{B} \mathcal{V}$. Therefore, $x \in \mathcal{L}_{q} \backslash \mathcal{B} \mathcal{V}$.

Theorem 2.8. Let $1<q<\infty$. Then, the sets \mathcal{L}_{u} and \mathcal{L}_{q} do not contain each other.
Proof. One can easily see that $\mathbf{e}^{\mathbf{k l}} \in \mathcal{L}_{u} \backslash \mathcal{L} \mathcal{S}_{q}$ and $\mathbf{d}^{\mathbf{k l}} \in \mathcal{L}_{u} \cap \mathcal{L} \mathcal{S}_{q}$. Consider the sequence $\Delta x=\left\{(\Delta x)_{k l}\right\}$ as in (2.1) for all $k, l \in \mathbb{N}$. Then, we obtain

$$
\sum_{k, l}\left|\{S(\Delta x)\}_{k l}\right|^{q}=\sum_{k, l}\left|x_{k l}\right|^{q}=\sum_{k, l} \frac{1}{[(k+1)(l+1)]^{q}}<\infty,
$$

i.e., $\Delta x \in \mathcal{L} \mathcal{S}_{q}$, but $\Delta x \notin \mathcal{L}_{u}$ by Theorem 2.7.

Theorem 2.9. Let $0<q<1$. Then, the sets \mathcal{L}_{u} and $\mathcal{B} \mathcal{V}_{q}$ do not contain each other.
Proof. It is clear that $\mathbf{e} \in \mathcal{B} \mathcal{V}_{q} \backslash \mathcal{L}_{u}$ and $\mathbf{e}^{\mathbf{k} \mathbf{l}} \in \mathcal{B} \mathcal{V}_{q} \cap \mathcal{L}_{u}$. Define $x=\left(x_{k l}\right)$ by

$$
x_{k l}:=\frac{(-1)^{k+l}}{[(k+1)(l+1)]^{1 / q}}
$$

for all $k, l \in \mathbb{N}$. Since $1 / q>1$, the series

$$
\sum_{k, l}\left|x_{k l}\right|=\sum_{k, l} \frac{1}{[(k+1)(l+1)]^{1 / q}}
$$

is convergent. On the other hand, we see from

$$
(\Delta x)_{k l}=\left\{\begin{array}{cl}
1 & , \quad k, l=0, \tag{2.2}\\
(-1)^{l} \frac{l^{1 / q}+(l+1)^{1 / q}}{[l(l+1)]^{1 / q}} & , \quad k=0 \text { and } l \geq 1, \\
(-1)^{k} \frac{k^{1 / q}+(k+1)^{1 / q}}{[k(k+1)]^{1 / q}} & , l=0 \text { and } k \geq 1, \\
(-1)^{k+l} \frac{[(k+1)(l+1)]^{1 / q}+[(k+1) l]^{1 / q}}{[k l(k+1)(l+1)]^{1 / q}} & \\
+(-1)^{k+l} \frac{[k(l+1)]^{1 / q}+(k l)^{1 / q}}{[k l(k+1)(l+1)]^{1 / q}} & , k, l \geq 1
\end{array}\right.
$$

that the series

$$
\begin{aligned}
& \sum_{k, l}\left|(\Delta x)_{k l}\right|^{q} \\
& =1+\sum_{l=1}^{\infty}\left|\frac{l^{1 / q}+(l+1)^{1 / q}}{[l(l+1)]^{1 / q}}\right|^{q}+\sum_{k=1}^{\infty}\left|\frac{k^{1 / q}+(k+1)^{1 / q}}{[k(k+1)]^{1 / q}}\right|^{q} \\
& \quad+\sum_{k, l=1}^{\infty}\left|\frac{[(k+1)(l+1)]^{1 / q}+[(k+1) l]^{1 / q}+[k(l+1)]^{1 / q}+(k l)^{1 / q}}{[k l(k+1)(l+1)]^{1 / q}}\right|^{q} \\
& \geq 1+\sum_{l=1}^{\infty}\left|\frac{(l+1)^{1 / q}}{[l(l+1)]^{1 / q}}\right|^{q}+\sum_{k=1}^{\infty}\left|\frac{(k+1)^{1 / q}}{[k(k+1)]^{1 / q}}\right|^{q}+\sum_{k, l=1}^{\infty}\left|\frac{[(k+1)(l+1)]^{1 / q}}{[k l(k+1)(l+1)]^{1 / q}}\right|^{q} \\
& =1+\sum_{l=1}^{\infty} \frac{1}{l}+\sum_{k=1}^{\infty} \frac{1}{k}+\sum_{k, l=1}^{\infty} \frac{1}{k l}
\end{aligned}
$$

is divergent. Hence, $x \in \mathcal{L}_{u} \backslash \mathcal{B} \mathcal{V}_{q}$.
Theorem 2.10. Let $0<q<1$. Then, the sets \mathcal{L}_{q} and $\mathcal{L S}$ do not contain each other.
Proof. It is easy to see that $\mathbf{e}^{\mathbf{k l}} \in \mathcal{L}_{q} \backslash \mathcal{L S}$ and $\mathbf{d}^{\mathbf{k l}} \in \mathcal{L}_{q} \cap \mathcal{L} \mathcal{S}$. If we consider the sequence x in (2.2), then it is immediate that $x \in \mathcal{L} \mathcal{S} \backslash \mathcal{L}_{q}$.

Let $0<q<s<\infty$. It is known that the inclusions $\mathcal{L}_{q} \subset \mathcal{L}_{s} \subset \mathcal{M}_{u}$ strictly hold. By combining this fact with Theorem 2.1, we can give the following theorem without proof.

Theorem 2.11. Let $0<q<s<\infty$. Then, the inclusions $\mathcal{B} \mathcal{V}_{q} \subset \mathcal{B} \mathcal{V}_{s} \subset \mathcal{M}_{u}(\Delta)$ and $\mathcal{L} \mathcal{S}_{q} \subset \mathcal{L} \mathcal{S}_{s} \subset \mathcal{B S}$ strictly hold.
Theorem 2.12. Let λ denotes any of the spaces \mathcal{M}_{u} or \mathcal{C}_{ϑ} and $1<q<\infty$. Then, neither of the spaces $\mathcal{B} \mathcal{V}_{q}$ and λ includes the other one.
Proof. It is clear that $\mathbf{e} \in \mathcal{B} \mathcal{V}_{q} \cap \lambda$. Define $x=\left(x_{k l}\right)$ and $y=\left(y_{k l}\right)$ by

$$
x_{k l}:=\sum_{i, j=0}^{k, l} \frac{1}{(i+1)(j+1)} \quad \text { and } \quad y_{k l}:= \begin{cases}1 & , \quad k=0 \text { and } l \text { even } \\ 0 & , \quad \text { otherwise }\end{cases}
$$

for all $k, l \in \mathbb{N}$. Then, since
$(\Delta x)_{k l}:=\frac{1}{(k+1)(l+1)} \quad$ and $\quad(\Delta y)_{k l}:=\left\{\begin{array}{cl}(-1)^{k+l} & , \quad k=0,1 \text { and } l \in \mathbb{N}, \\ 0, & \text { otherwise }\end{array}\right.$
one can conclude that $x \in \mathcal{B} \mathcal{V}_{q} \backslash \lambda$ and $y \in \lambda \backslash \mathcal{B} \mathcal{V}_{q}$. Hence, the spaces $\mathcal{B} \mathcal{V}_{q}$ and λ are overlap but neither contains the other.

3. Dual Spaces

In this section, we give the α - and $\beta(b p)$-duals of the spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$ in the case $0<q \leq 1$. It is worth mentioning that although the alpha dual of a double sequence space is unique its beta dual may be more than one with respect to ϑ-convergence rule. By $\lambda^{n \zeta}$, we mean that $\left\{\lambda^{(n-1) \zeta}\right\}^{\zeta}$ for a double sequence space λ and $n \in \mathbb{N}_{1}$, the set of positive integers. It is well-known that $\mathcal{L}_{u}^{\alpha}=\mathcal{M}_{u}$ and $\mathcal{M}_{u}^{\alpha}=\mathcal{L}_{u}$.

Theorem 3.1. Let $0<q \leq 1$. Then, the followings hold for all $k \in \mathbb{N}_{1}$:

$$
\begin{align*}
\mathcal{B} \mathcal{V}_{q}^{n \alpha} & :=\left\{\begin{array}{lll}
\mathcal{L}_{u}, & n=2 k-1, \\
\mathcal{M}_{u}, & n=2 k,
\end{array}\right. \tag{3.1}\\
\mathcal{L} \mathcal{S}_{q}^{n \alpha} & := \begin{cases}\mathcal{M}_{u}, & n=2 k-1, \\
\mathcal{L}_{u}, & n=2 k .\end{cases}
\end{align*}
$$

Proof. Let $0<q \leq 1$.
(i) $\mathcal{B} V_{q}^{\alpha}=\mathcal{L}_{u}$.
$\mathcal{L}_{u} \subset \mathcal{B} \mathcal{V}_{q}^{\alpha}$: Let us consider $a=\left(a_{k l}\right) \in \mathcal{L}_{u}$ and $x=\left(x_{k l}\right) \in \mathcal{B} \mathcal{V}_{q}$. Then, we have by relation (1.3) that $y \in \mathcal{L}_{q} \subset \mathcal{L}_{u}$ which gives

$$
\sum_{k, l}\left|a_{k l} x_{k l}\right| \leq \sum_{k, l}\left|a_{k l}\right| \sum_{i, j=0}^{k, l}\left|y_{i j}\right| \leq\|a\|_{\mathcal{L}_{u}}\|y\|_{\mathcal{L}_{u}}
$$

that is, $a x \in \mathcal{L}_{u}$. Hence, $a \in \mathcal{B} \mathcal{V}_{q}^{\alpha}$.
$\mathcal{B} \mathcal{V}_{q}^{\alpha} \subset \mathcal{L}_{u}$: Suppose that $a \in \mathcal{B} \mathcal{V}_{q}^{\alpha} \backslash \mathcal{L}_{u}$. Then, we have $a x \in \mathcal{L}_{u}$ for $x \in \mathcal{B} \mathcal{V}_{q}$ but $a \notin \mathcal{L}_{u}$. If we consider $\mathbf{e} \in \mathcal{B} \mathcal{V}_{q}$, then we obtain $a \mathbf{e}=a \notin \mathcal{L}_{u}$, that is, $a \notin \mathcal{B} \mathcal{V}_{q}^{\alpha}$, a contradiction. Hence, a must be in \mathcal{L}_{u}.
(ii) $\mathcal{L} \mathcal{S}_{q}^{\alpha}=\mathcal{M}_{u}$.
$\mathcal{M}_{u} \subset \mathcal{L} \mathcal{S}_{q}^{\alpha}:$ Take $a \in \mathcal{M}_{u}$ and $x \in \mathcal{L} \mathcal{S}_{q} \subset \mathcal{L}_{u}$. Then, we get by

$$
\|a x\|_{\mathcal{L}_{u}} \leq\|a\|_{\infty}\|x\|_{\mathcal{L}_{u}}
$$

that $a \in \mathcal{L} \mathcal{S}_{q}^{\alpha}$.
$\mathcal{L} \mathcal{S}_{q}^{\alpha} \subset \mathcal{M}_{u}$: Consider $a \in \mathcal{L} \mathcal{S}_{q}^{\alpha} \backslash \mathcal{M}_{u}$. Since $a \notin \mathcal{M}_{u}$, there exist the subsequences of natural numbers $\{k(i)\}$ and $\{l(i)\}$, at least one of them is strictly increasing, such that

$$
a_{k(i), l(i)}>(i+1)^{2 / q}
$$

for all $i \in \mathbb{N}$. If we define the sequence x by using the double sequence $\mathbf{d}^{\mathbf{k l}}$ as

$$
x=\sum_{i}(i+1)^{-2 / q} \mathbf{d}^{\mathbf{k}(\mathbf{i}), \mathbf{l}(\mathbf{i})},
$$

then we obtain that

$$
\sum_{i, j=0}^{k, l} x_{i j}:=\left\{\begin{array}{cl}
(i+1)^{-2 / q} & , \quad k=k(i) \text { and } l=l(i) \\
0 & , \quad k \neq k(i) \text { and } l \neq l(i)
\end{array}\right.
$$

which leads us to the fact that

$$
\sum_{k, l}\left|\sum_{i, j=0}^{k, l} x_{i j}\right|^{q}=\sum_{i} \frac{1}{(i+1)^{2}}<\infty
$$

i.e., $x \in \mathcal{L} \mathcal{S}_{q}$. Nevertheless, by choosing $k(i)+1<k(i+1)$ or $l(i)+1<l(i+1)$ we get

$$
\begin{aligned}
\sum_{k, l}\left|a_{k l} x_{k l}\right| & >\sum_{i}\left|a_{k(i), l(i)} x_{k(i), l(i)}\right| \\
& >\sum_{i}(i+1)^{2 / q}\left|x_{k(i), l(i)}\right| \\
& =\sum_{i} 1=\infty
\end{aligned}
$$

i.e., $a \notin \mathcal{L S}_{q}^{\alpha}$, a contradiction. Hence, $a \in \mathcal{M}_{u}$.

Now, by using the facts $\mathcal{L}_{u}^{\alpha}=\mathcal{M}_{u}$ and $\mathcal{M}_{u}^{\alpha}=\mathcal{L}_{u}$, one can easily show that (3.1) holds with mathematical induction.

We give the following lemma which is needed in proving the $\beta(\vartheta)$-dual of the spaces $\mathcal{B} \mathcal{V}_{q}$ and $\mathcal{L} \mathcal{S}_{q}$.
Lemma 3.2.([17]) Let $0<q \leq 1$. Then, a four-dimensional matrix $A=\left(a_{m n k l}\right) \in$ $\left(\mathcal{L}_{q}: \mathcal{C}_{\vartheta}\right)$ if and only if the following conditions hold:

$$
\begin{align*}
& \sup _{m, n, k, l \in \mathbb{N}}\left|a_{m n k l}\right|<\infty \tag{3.2}\\
& \exists \alpha_{k l} \in \mathbb{C} \ni \vartheta-\lim _{m, n \rightarrow \infty} a_{m n k l}=\alpha_{k l} \text { for each } k, l \in \mathbb{N} . \tag{3.3}
\end{align*}
$$

Now, we may give the beta-duals of the new spaces with respect to the ϑ convergence rule using the technique in [4] and [5] for the spaces of single sequences.

Let us define the sets $\mathcal{B S}(u)$ and $\mathcal{C S}_{\vartheta}(u)$ via the double sequence u, as follows:

$$
\begin{aligned}
\mathcal{B S}(u) & :=\left\{a=\left(a_{i j}\right) \in \Omega: a u=\left(a_{i j} u_{i j}\right)_{i, j \in \mathbb{N}} \in \mathcal{B S}\right\} \\
\mathcal{C S}_{\vartheta}(u) & :=\left\{a=\left(a_{i j}\right) \in \Omega: a u=\left(a_{i j} u_{i j}\right)_{i, j \in \mathbb{N}} \in \mathcal{C S}_{\vartheta}\right\}
\end{aligned}
$$

Theorem 3.3. Let $0<q \leq 1$. Then, the $\beta(\vartheta)$-dual of the space $\mathcal{B} \mathcal{V}_{q}$ is $\mathcal{C S}_{b p}\left(\mathbf{b}^{\mathbf{k l} \mathbf{l}}\right)$.

Proof. We will determine the necessary and sufficient conditions in order to the sequence $t=\left(t_{m n}\right)$ defined by

$$
t_{m n}:=\sum_{i, j=0}^{m, n} a_{i j} x_{i j} ; \quad x=\left(x_{i j}\right) \in \mathcal{B} \mathcal{V}_{q}
$$

for all $m, n \in \mathbb{N}$ to be ϑ-convergent for a sequence $a=\left(a_{i j}\right) \in \Omega$.
Let us define the sequence $x=\left(x_{i j}\right) \in \mathcal{B} V_{q}$ by the relation (1.3) which gives $y=\left(y_{k l}\right) \in \mathcal{L}_{q}$. Then, we can write $t=\left(t_{m n}\right)$ in the matrix form, as follows:

$$
\begin{aligned}
t_{m n} & =\sum_{i, j=0}^{m, n} x_{i j} a_{i j}=\sum_{i, j=0}^{m, n}\left(\sum_{k, l=0}^{i, j} y_{k l}\right) a_{i j} \\
& =\sum_{k, l=0}^{m, n}\left(\sum_{i, j=k, l}^{m, n} a_{i j}\right) y_{k l} \\
& =\sum_{k, l=0}^{m, n} b_{m n k l} y_{k l}=(B y)_{m n},
\end{aligned}
$$

where the four-dimensional matrix $B=\left(b_{m n k l}\right)$ is defined by

$$
b_{m n k l}:=\left\{\begin{array}{cl}
\sum_{i, j=k, l}^{m, n} a_{i j} & , \quad 0 \leq k \leq m \text { and } 0 \leq l \leq n, \tag{3.4}\\
0, & \text { otherwise }
\end{array}\right.
$$

for all $k, l, m, n \in \mathbb{N}$. Now, it is easy to see that $a x=\left(a_{i j} x_{i j}\right) \in \mathcal{C S}_{\vartheta}$ whenever $x=\left(x_{i j}\right) \in \mathcal{B} \mathcal{V}_{q}$ if and only if $t=\left(t_{m n}\right) \in \mathcal{C}_{\vartheta}$ whenever $y=\left(y_{k l}\right) \in \mathcal{L}_{q}$ which leads us to the fact that $B \in\left(\mathcal{L}_{q}: \mathfrak{C}_{\vartheta}\right)$. Therefore, by using the conditions (3.2) and (3.3) of Lemma 3.2, we obtain the conditions

$$
\begin{align*}
& \sup _{m, n, k, l \in \mathbb{N}}\left|b_{m n k l}\right|=\sup _{m, n, k, l \in \mathbb{N}}\left|\sum_{i, j=k, l}^{m, n} a_{i j}\right|=\sup _{m, n, k, l \in \mathbb{N}}\left|\sum_{i, j=0}^{m, n} a_{i j} \mathbf{b}_{i j}^{\mathrm{kl}}\right|<\infty, \tag{3.5}\\
& \vartheta-\lim _{m, n \rightarrow \infty} b_{m n k l}=\vartheta-\lim _{m, n \rightarrow \infty} \sum_{i, j=0}^{m, n} a_{i j} \mathbf{b}_{i j}^{\mathbf{k l}} \text { exists } \tag{3.6}
\end{align*}
$$

for all $k, l \in \mathbb{N}$. By means of (3.5) and (3.6), we can say that $a \mathbf{b}^{\mathbf{k l}}=\left(a_{i j} \mathbf{b}_{i j}^{\mathbf{k l}}\right) \in$ $\left\{\mathcal{B S}, \mathcal{C S}_{\vartheta}\right\}$, in other words, $a \in \mathcal{B S}\left(\mathbf{b}^{\mathbf{k l}}\right) \cap \mathcal{C S}_{\vartheta}\left(\mathbf{b}^{\mathbf{k l}}\right)=\mathcal{C S}_{b p}\left(\mathbf{b}^{\mathbf{k l}}\right)$.

This completes the proof.
Theorem 3.4. Let $0<q \leq 1$. Then, the $\beta(\vartheta)$-dual of the space $\mathcal{L} \mathcal{S}_{q}$ is the set \mathcal{M}_{u}.
Proof. We prove the theorem it by the similar way used in the proof of Theorem 3.3.

Consider $y=\left(y_{k l}\right) \in \mathcal{L} \mathcal{S}_{q}$ by (1.2). Then, $x=\left(x_{k l}\right) \in \mathcal{L}_{q}$. Therefore, we obtain by applying Abel's generalized transformation for double sequences that

$$
\begin{aligned}
t_{m n} & =\sum_{k, l=0}^{m, n} a_{k l} y_{k l} \\
& =\sum_{k, l=0}^{m-1, n-1}\left(\Delta_{11} a_{k l}\right) x_{k l}+\sum_{k=0}^{m-1}\left(\Delta_{10} a_{k n}\right) x_{k n}+\sum_{l=0}^{n-1}\left(\Delta_{01} a_{m l}\right) x_{m l}+a_{m n} x_{m n} \\
& =\sum_{k, l=0}^{m, n} c_{m n k l} x_{k l}=(C x)_{m n}
\end{aligned}
$$

where the four-dimensional matrix $C=\left(c_{m n k l}\right)$ is defined by

$$
c_{m n k l}:=\left\{\begin{array}{cll}
\Delta_{11} a_{k l} & , \quad 0 \leq k \leq m-1 \text { and } 0 \leq l \leq n-1, \\
\Delta_{10} a_{k n} & , \quad 0 \leq k \leq m-1 \text { and } l=n, \\
\Delta_{01} a_{m l} & , \quad 0 \leq l \leq n-1 \text { and } k=m, \\
a_{m n} & , \quad k=m \text { and } l=n, \\
0 & , & \text { otherwise }
\end{array}\right.
$$

for all $k, l, m, n \in \mathbb{N}$. By using similar approach in Theorem $3.3, C \in\left(\mathcal{L}_{q}: \mathcal{C}_{\vartheta}\right)$. Therefore, we get by Lemma 3.2 that

$$
\vartheta-\lim _{m, n \rightarrow \infty} c_{m n k l}=\Delta_{11} a_{k l}
$$

i.e., $\vartheta-\lim _{m, n \rightarrow \infty} c_{m n k l}$ always exists for each $k, l \in \mathbb{N}$. Also, from the condition

$$
\sup _{m, n, k, l \in \mathbb{N}}\left|c_{m n k l}\right|<\infty
$$

we have $\left(a_{m n}\right) \in \mathcal{M}_{u},\left(\Delta_{01} a_{m l}\right) \in \mathcal{M}_{u},\left(\Delta_{10} a_{k n}\right) \in \mathcal{M}_{u}$ and $\left(\Delta_{11} a_{k l}\right) \in \mathcal{M}_{u}$ for all $k, l, m, n \in \mathbb{N}$. It is easy to show that the condition $a=\left(a_{m n}\right) \in \mathcal{M}_{u}$ is sufficient for the matrix $C=\left(c_{m n k l}\right)$ to be bounded for all $k, l, m, n \in \mathbb{N}$.

This completes the proof.

4. Matrix Transformations

In the present section, we characterize the classes $\left(\mathcal{L}_{q}: \mathcal{L}_{q_{1}}\right),\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{L}_{q_{1}}\right)$, $\left(\mathcal{L S}_{q}: \mathcal{L}_{q_{1}}\right),\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{C}_{b p}\right)$ and $\left(\mathcal{L S}_{q}: \mathcal{C}_{b p}\right)$ together with a corollary characterizing some classes of four-dimensional matrices without proof; where $0<q \leq 1$ and $0<q_{1}<\infty$.

Theorem 4.1. Let $0<q \leq 1$ and $0<q_{1}<\infty$. Then, $A=\left(a_{m n k l}\right) \in\left(\mathcal{L}_{q}: \mathcal{L}_{q_{1}}\right)$ if and only if the following condition holds:

$$
\begin{equation*}
\sup _{k, l \in \mathbb{N}} \sum_{m, n}\left|a_{m n k l}\right|^{q_{1}}<\infty \tag{4.1}
\end{equation*}
$$

Proof. Let us consider $A=\left(a_{m n k l}\right) \in\left(\mathcal{L}_{q}: \mathcal{L}_{q_{1}}\right)$ with $0<q \leq 1$ and $0<q_{1}<\infty$. Then, $A x$ exists and belongs to $\mathcal{L}_{q_{1}}$ for all $x \in \mathcal{L}_{q}$. Since $\mathbf{e}^{\mathbf{k l}} \in \mathcal{L}_{q}$, we obtain

$$
\sum_{m, n}\left|\sum_{i, j} a_{m n i j} e_{i j}^{k l}\right|^{q_{1}}=\sum_{m, n}\left|a_{m n k l}\right|^{q_{1}}<\infty
$$

for all $k, l \in \mathbb{N}$. Hence, (4.1) is necessary.
Conversely, suppose that the condition (4.1) holds and $x=\left(x_{k l}\right) \in \mathcal{L}_{q}$. Since $\mathcal{L}_{q} \subset \mathcal{L}_{u}$ for $0<q \leq 1, x$ also belongs to \mathcal{L}_{u}. Thus, we have

$$
\begin{aligned}
\sum_{m, n}\left|\sum_{k, l} a_{m n k l} x_{k l}\right|^{q_{1}} & \leq \sum_{m, n}\left(\sum_{k, l}\left|a_{m n k l}\right|\left|x_{k l}\right|\right)^{q_{1}} \\
& \leq \sum_{m, n}\left(\left|a_{m n k_{0} l_{0}}\right| \sum_{k, l}\left|x_{k l}\right|\right)^{q_{1}} \\
& \leq\|x\|_{\mathcal{L}_{u}}^{q_{1}} \sum_{m, n}\left|a_{m n k_{0} l_{0}}\right|^{q_{1}}<\infty
\end{aligned}
$$

for any fixed $k_{0}, l_{0} \in \mathbb{N}$. Therefore, $A \in\left(\mathcal{L}_{q}: \mathcal{L}_{q_{1}}\right)$.
This completes the proof.
Theorem 4.2. Let $0<q \leq 1$ and $0<q_{1}<\infty$. Then, $A=\left(a_{m n k l}\right) \in\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{L}_{q_{1}}\right)$ if and only if the following condition holds:

$$
\begin{equation*}
\sup _{k, l \in \mathbb{N}} \sum_{m, n}\left|\sum_{i, j=k, l}^{\infty} a_{m n i j}\right|^{q_{1}}<\infty \tag{4.2}
\end{equation*}
$$

Proof. We obtain the necessity of the condition (4.2) by choosing the double sequence $\mathbf{b}^{\mathbf{k l}} \in \mathcal{B} \mathcal{V}_{q}$.

Let us define $x=\left(x_{i j}\right) \in \mathcal{B} \mathcal{V}_{q}$ by (1.3) which gives $y=\left(y_{k l}\right) \in \mathcal{L}_{q}$. Then, we derive by the s, t-th rectangular partial sum of the series $\sum_{i, j} a_{m n i j} x_{i j}$ that

$$
\begin{aligned}
(A x)_{m n}^{[s, t]} & =\sum_{i, j=0}^{s, t}\left(\sum_{k, l=0}^{i, j} y_{k l}\right) a_{m n i j} \\
& =\sum_{k, l=0}^{s, t}\left(\sum_{i, j=k, l}^{s, t} a_{m n i j}\right) y_{k l}
\end{aligned}
$$

for all $m, n, s, t \in \mathbb{N}$. Therefore, we see by letting $s, t \rightarrow \infty$ that

$$
(A x)_{m n}=\sum_{k, l}\left(\sum_{i, j=k, l}^{\infty} a_{m n i j}\right) y_{k l}
$$

for all $m, n \in \mathbb{N}$. Thus, we get the desired result by the same way used in proving Theorem 4.1.

Theorem 4.3. Let $0<q \leq 1$ and $0<q_{1}<\infty$. Then, $A=\left(a_{m n k l}\right) \in\left(\mathcal{L S}_{q}: \mathcal{L}_{q_{1}}\right)$ if and only if the following conditions hold:

$$
\begin{align*}
& \sup _{k, l \in \mathbb{N}} \sum_{m, n}\left|\Delta_{11}^{k l} a_{m n k l}\right|^{q_{1}}<\infty \tag{4.3}\\
& \sup _{k, l \in \mathbb{N}} \sum_{m, n}\left|\Delta_{10}^{k l} a_{m n k l}\right|^{q_{1}}<\infty \tag{4.4}\\
& \sup _{k, l \in \mathbb{N}} \sum_{m, n}\left|\Delta_{01}^{k l} a_{m n k l}\right|^{q_{1}}<\infty \tag{4.5}\\
& \sup _{k, l \in \mathbb{N}} \sum_{m, n}\left|a_{m n k l}\right|^{q_{1}}<\infty \tag{4.6}
\end{align*}
$$

Proof. Take $x=\left(x_{k l}\right) \in \mathcal{L} \mathcal{S}_{q}$ by the relation $x=\Delta y$ which gives $y=\left(y_{k l}\right) \in \mathcal{L}_{q}$. Let us define the four-dimensional matrix $A^{s t}=\left(a_{m n k l}^{s t}\right)$ by

$$
a_{m n k l}^{s t}:=\left\{\begin{array}{cll}
a_{m n k l} & , \quad 0 \leq k \leq s \text { and } 0 \leq l \leq t \\
0 & , & k>s \text { or } l>t
\end{array}\right.
$$

for each $s, t \in \mathbb{N}$ and all $m, n, k, l \in \mathbb{N}$. By using generalized Abel transformation for double series, we obtain the equalities

$$
\begin{aligned}
\left(A^{s t} x\right)_{m n}= & \sum_{k, l=0}^{s, t} a_{m n k l} x_{k l} \\
= & \sum_{k, l=0}^{s-1, t-1}\left(\Delta_{11}^{k l} a_{m n k l}\right) y_{k l}+\sum_{k=0}^{s-1}\left(\Delta_{10}^{k l} a_{m n k t}\right) y_{k t} \\
& +\sum_{l=0}^{t-1}\left(\Delta_{01}^{k l} a_{m n s l}\right) y_{s l}+a_{m n s t} y_{s t} \\
= & \left(D^{s t} y\right)_{m n}
\end{aligned}
$$

which gives that $A^{s t} \in\left(\mathcal{L S}_{q}: \mathcal{L}_{q_{1}}\right)$ if and only if $D^{s t} \in\left(\mathcal{L}_{q}: \mathcal{L}_{q_{1}}\right)$, where the
four-dimensional matrix $D^{s t}=\left(d_{m n k l}^{s t}\right)$ defined by

$$
d_{m n k l}^{s t}:=\left\{\begin{array}{cll}
\Delta_{11}^{k l} a_{m n k l} & , \quad 0 \leq k \leq s-1 \text { and } 0 \leq l \leq t-1 \\
\Delta_{10}^{k l} a_{m n k l} & , \quad 0 \leq k \leq s-1 \text { and } l=t \\
\Delta_{01}^{k l} a_{m n k l} & , \quad 0 \leq l \leq t-1 \text { and } k=s \\
a_{m n k l} & , \quad k=s \text { and } l=t \\
0 & , & k>s \text { or } l>t
\end{array}\right.
$$

for each $s, t \in \mathbb{N}$ and all $m, n, k, l \in \mathbb{N}$. Now, one can easily derive the conditions (4.3)-(4.6) for all $s, t \in \mathbb{N}$.

By using Theorem 4.2 and Theorem 4.3, we can give the following two theorems without proof.

Theorem 4.4. Let $0<q \leq 1$. Then, $A=\left(a_{m n k l}\right) \in\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{C}_{\vartheta}\right)$ if and only if the following conditions hold:

$$
\begin{align*}
& \sup _{m, n, k, l \in \mathbb{N}}\left|\sum_{i, j=k, l}^{\infty} a_{m n i j}\right|<\infty \tag{4.7}\\
& \vartheta-\lim _{m, n \rightarrow \infty} \sum_{i, j=k, l}^{\infty} a_{m n i j} \text { exists for all } k, l \in \mathbb{N} . \tag{4.8}
\end{align*}
$$

Theorem 4.5. Let $0<q \leq 1$. Then, $A=\left(a_{m n k l}\right) \in\left(\mathcal{L S}_{q}: \mathcal{C}_{\vartheta}\right)$ if and only if the conditions (3.2) and (3.3) hold.
Theorem 4.6. Suppose that the elements of the four-dimensional infinite matrices $E=\left(e_{m n k l}\right)$ and $F=\left(f_{m n k l}\right)$ are connected with the relation

$$
\begin{equation*}
e_{k l i j}=\sum_{m, n=0}^{k, l} f_{m n i j} \tag{4.9}
\end{equation*}
$$

for all $i, j, k, l, m, n \in \mathbb{N}$ and λ, μ be any given two double sequence spaces. Then, $E \in\left(\lambda: \mu_{\Delta}\right)$ if and only if $F \in(\lambda: \mu)$ and also $F \in\left(\lambda: \mu_{S}\right)$ if and only if $E \in(\lambda: \mu)$.
Proof. Let $x=\left(x_{i j}\right) \in \lambda$. By using (4.9), we derive that

$$
\sum_{i, j=0}^{s, t} e_{k l i j} x_{i j}=\sum_{m, n=0}^{k, l} \sum_{i, j=0}^{s, t} f_{m n i j} x_{i j}
$$

for all $k, l, m, n, s, t \in \mathbb{N}$ and by letting $s, t \rightarrow \infty$ that

$$
\sum_{i, j} e_{k l i j} x_{i j}=\sum_{m, n=0}^{k, l} \sum_{i, j} f_{m n i j} x_{i j}
$$

which lead us to the fact

$$
\begin{equation*}
(E x)_{k l}=\sum_{m, n=0}^{k, l}(F x)_{m n} \tag{4.10}
\end{equation*}
$$

for all $k, l \in \mathbb{N}$. Then, it is easy to see by (4.10) that $E x \in \mu_{\Delta}$ whenever $x \in \lambda$ if and only if $F x \in \mu$ whenever $x \in \lambda$ and similarly, $F x \in \mu_{S}$ whenever $x \in \lambda$ if and only if $E x \in \mu$ whenever $x \in \lambda$.

This completes the proof.
As a consequence of Theorem 4.6, we can give the following corollary.
Corollary 4.7. Let $0<q \leq 1,0<q_{1}<\infty$ and the elements of the fourdimensional matrices $E=\left(e_{m n k l}\right)$ and $F=\left(f_{m n k l}\right)$ are connected with the relation (4.9). Then, the following statements hold:
(i) $E=\left(e_{m n k l}\right) \in\left(\mathcal{L}_{q}: \mathcal{C}_{\vartheta}(\Delta)\right)$ if and only if the conditions (3.2) and (3.3) hold with $f_{m n k l}$ instead of $a_{m n k l}$.
(ii) $F=\left(e_{m n k l}\right) \in\left(\mathcal{L}_{q}: \mathcal{C S}_{\vartheta}\right)$ if and only if the conditions (3.2) and (3.3) hold with $e_{m n k l}$ instead of $a_{m n k l}$.
(iii) $E=\left(e_{m n k l}\right) \in\left(\mathcal{L}_{q}: \mathcal{B} \mathcal{V}_{q_{1}}\right)$ if and only if the condition (4.1) holds with $f_{m n k l}$ instead of $a_{m n k l}$.
(iv) $F=\left(e_{m n k l}\right) \in\left(\mathcal{L}_{q}: \mathcal{L S}_{q_{1}}\right)$ if and only if the condition (4.1) holds with $e_{m n k l}$ instead of $a_{m n k l}$.
(v) $E=\left(e_{m n k l}\right) \in\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{B} \mathcal{V}_{q_{1}}\right)$ if and only if the condition (4.2) holds with $f_{m n k l}$ instead of $a_{m n k l}$.
(vi) $F=\left(e_{m n k l}\right) \in\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{L} \mathcal{S}_{q_{1}}\right)$ if and only if the condition (4.2) holds with $e_{m n k l}$ instead of $a_{m n k l}$.
(vii) $E=\left(e_{m n k l}\right) \in\left(\mathcal{L S}_{q}: \mathcal{B} \mathcal{V}_{q_{1}}\right)$ if and only if the conditions (4.3)-(4.6) hold with $f_{m n k l}$ instead of $a_{m n k l}$.
(viii) $F=\left(e_{m n k l}\right) \in\left(\mathcal{S}_{q}: \mathcal{L}_{q_{1}}\right)$ if and only if the conditions (4.3)-(4.6) hold with $e_{m n k l}$ instead of $a_{m n k l}$.
(ix) $E=\left(e_{m n k l}\right) \in\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{C}_{\vartheta}(\Delta)\right)$ if and only if the conditions (4.7) and (4.8) hold with $f_{m n k l}$ instead of $a_{m n k l}$.
(x) $F=\left(e_{m n k l}\right) \in\left(\mathcal{B} \mathcal{V}_{q}: \mathcal{C S}_{\vartheta}\right)$ if and only if the conditions (4.7) and (4.8) hold with $e_{m n k l}$ instead of $a_{m n k l}$.
(xi) $E=\left(e_{m n k l}\right) \in\left(\mathcal{L S}_{q}: \mathcal{C}_{\vartheta}(\Delta)\right)$ if and only if the conditions (3.2) and (3.3) hold with $f_{m n k l}$ instead of $a_{m n k l}$.
(xii) $F=\left(e_{m n k l}\right) \in\left(\mathcal{L S}_{q}: \mathcal{C S}_{\vartheta}\right)$ if and only if the conditions (3.2) and (3.3) hold with $e_{m n k l}$ instead of $a_{m n k l}$.

5. Conclusion

As the domain of backward difference matrix in the space ℓ_{p} of absolutely p summable sequences, the space $b v_{p}$ of p-bounded variation single sequences were studied in the case $1<p \leq \infty$ by Başar and Altay [5], and in the case $0<p \leq 1$ by Altay and Başar [3]. Later, by introducing the space $\widehat{\ell}_{p}$ as the domain of double band matrix $B(r, s)$ in the space ℓ_{p} Kirişçi and Başar [15] generalized the space $b v_{p}$. Besides this, the space $b v_{p}$ was extended to the paranormed space $b v(u, p)$ of single sequences by Başar et al. [6].

Recently, the space \mathcal{L}_{q} of absolutely q-summable double sequences with $q>1$ was introduced by Başar and Sever [9], and some complementary results related to the space \mathcal{L}_{q} have been recently given by Yeşilkayagil and Başar [17]. We introduce the space $\mathcal{L} \mathcal{S}_{q}$ as the domain of four dimensional summation matrix S in the space \mathcal{L}_{q} with $0<q<\infty$. It is natural to expect the extension of the space $\mathcal{L} \mathcal{S}_{q}$ to the paranormed space $\mathcal{L} \mathcal{S}_{q}(t)$ as a generalization of the space $\overline{\ell(p)}$ derived by Choudhary and Misra [12] as the domain of the two dimensional summation matrix in the paranormed space $\ell(p)$ of single sequences. Our main goal is to investigate the space $\mathcal{B} \mathcal{V}_{q}$ of q-bounded variation double sequences and is to extend to the results obtained for the space $b v_{q}$. Of course, it is worth mentioning here that the domain of the backward difference matrix Δ in the paranormed space $\ell(p)$ and also the investigation of the results for double sequences corresponding to Başar et al. [6] remains open.

Additionally, one can generalize the main results of the present paper related to the space $\mathcal{B} \mathcal{V}_{q}$ by using the four dimensional triangle matrix $B(r, s, t, u)=$ $\left\{b_{m n k l}(r, s, t, u)\right\}$ instead of the four dimensional backward difference matrix Δ, where $r, s, t, u \in \mathbb{R}$ with $r, t \neq 0$ and

$$
b_{m n k l}(r, s, t, u):=\left\{\begin{array}{rl}
r t & , \\
s t & (k, l)=(m, n), \\
r u & , \\
s u, l)=(m-1, n)=(m, n-1), \\
0 & ,
\end{array}, \quad(k, l)=(m-1, n-1),\right.
$$

for all $m, n, k, l \in \mathbb{N}$. Furthermore, following Başar and Çapan $[7,8]$ and Çapan and Başar $[10,11]$, one can also extend the main results of this paper to the paranormed case.

References

[1] C. R. Adams, On non-factorable transformations of double sequences, Proc. Natl. Acad. Sci. USA., 19(5)(1933), 564-567.
[2] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(2005), 70-90.
[3] B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $\ell_{p},(0<p<1)$, Commun. Math. Anal., 2(2)(2007), 1-11.
[4] F. Başar and B. Altay, Matrix mappings on the space bs(p) and its $\alpha-$, β-, and γ-duals, Aligarh Bull. Math., 21(2002), 79-91.
[5] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(2003), 136-147.
[6] F. Başar, B. Altay and M. Mursaleen, Some generalizations of the space bv of p bounded variation sequences, Nonlinear Anal., 68(2)(2008), 273-287.
[7] F. Başar and H. Çapan, On the paranormed spaces of regularly convergent double sequences, Results Math., 72(1-2)(2017), 893-906.
[8] F. Başar and H. Çapan, On the paranormed space $M_{u}(t)$ of double sequences, Bol. Soc. Parana. Mat., 37(3)(2019), 99-111.
[9] F. Başar and Y. Sever, The space \mathcal{L}_{q} of double sequences, Math. J. Okayama Univ., 51(2009), 149-157.
[10] H. Çapan and F. Başar, Some paranormed difference spaces of double sequences, Indian J. Math., 58(3)(2016), 405-427.
[11] H. Çapan and F. Başar, On the paranormed space $\mathcal{L}(t)$ of double sequences, Filomat, 32(3)(2018), 1043-1053.
[12] B. Choudhary and S.K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5)(1993), 291-301.
[13] R. C. Cooke, Infinite matrices and sequence spaces, Macmillan and Co. Limited, London, 1950.
[14] S. Demiriz and O. Duyar, Domain of difference matrix of order one in some spaces of double sequences, Gulf J. Math., 3(3)(2015), 85-100.
[15] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60(5)(2010), 1299-1309.
[16] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
[17] M. Yessilkayagil and F. Başar, Domain of Riesz mean in the space \mathcal{L}_{s}^{*}, Filomat, 31(4)(2017), 925-940.
[18] M. Zeltser, Weak sequential completeness of β-duals of double sequence spaces, Anal. Math., 27(3)(2001), 223-238.

