• 제목/요약/키워드: $\beta$-type

검색결과 2,066건 처리시간 0.027초

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.

황금 지상부의 항산화 및 항 알러지 활성 성분 (Antioxidant and Antiallergic Activity of Compounds from the Aerial Parts of Scutellaria baicalensis Georgi)

  • 차자현;김현욱;김성건;정성희;황완균
    • 약학회지
    • /
    • 제50권2호
    • /
    • pp.136-143
    • /
    • 2006
  • Roots of Scutellaria baicalensis have been used for fever remedy; diuresis, antiphlogistic. For the investigation of the active component from aerial parts of Scutellaria baicalensis, MeOH extracts from aerial parts of Scutellaria baicalensis were suspended with $H_2O$, and partitioned by $CHCl_3$. In order to investigate the efficacy of antioxidative activity the activity guided fraction and isolation of physiologically active substance were peformed. Its $H_2O,\;30\%,\;60\%$ MeOH and MeOH fractions were examined on antioxidative activity using DPPH method and TBARS assay; It was revealed that $30\%\;and\;60\%$ MeOH fractions have significant anti-oxidative activity. its fractions testing type I allergy, compound 48/80 induced systemic anaphylaxis was applied. As a result, compared with reference (cromolygate), these fraction significantly inhibited systemic anaphylaxis by $71\%\;and\;57\%$, respectively. From $30\%,\;60\%$ MeOH fraction, five compounds were isolated and elucidated apigenin 6-C-${\alpha}$-L-arabinopyranosyl-8-C-${\beta}$-D-glucopyranoside (isoschaftside, I), scutellarein 7-O-${\beta}$-D-glucuronopyranoside (scutellarin, II), apigenin 7-O- ${\beta}$-D-glucuronopyranoside (III), isoscutellarein 8-O-${\beta}$-D-glucuronopyranoside (IV), kaempferol 3-O-${\beta}$-D-glucopyranoside (V) through their physicochemical data and spectroscopic methods. We measured radical scavenging activity with DPPH method and anti-lipid peroxidative efficacy on human LDL with TBARS assay. [$I] showed antioxidant activities in order. Type I allergy compound 48/80 induced systemic anaphylaxis was applied. $[V inhibited systemic anaphylaxis in order.

The Ring-H2 Finger Motif of CKBBP1/SAG Is Necessary for Interaction with Protein Kinase CKII and Optimal Cell Proliferation

  • Kim, Yun-Sook;Ha, Kwon-Soo;Kim, Young-Ho;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.629-636
    • /
    • 2002
  • Protein kinase CKII (CKII) is required for progression through the cell division cycle. We recently reported that the $\beta$ subunit of protein kinase CKII ($CKII{\beta}$) associates with CKBBP1 that contains the Ring-H2 finger motif in the yeast two-hybrid system. We demonstrate here that the Ring-H2 finger-disrupted mutant of CKBBP1 does not interact with purified $CKII{\beta}$ in vitro, which shows that the Ring-H2 finger motif is critical for direct interaction with $CKII{\beta}$. The CKII holoenzyme is efficiently co-precipitated with the wild-type CKBBP1, but not with the Ring-H2 finger-disrupted CKBBP1, from whole cell extracts when epitope-tagged CKBBP1 is transiently expressed in HeLa cells. Disruption of the Ring-H2 finger motif does not affect the cellular localization of CKBBP1 in HeLa cells. The increased expression of either the wild-type CKBBP1 or Ring-H2 finger-disrupted CKBBP1 does not modulate the protein or the activity levels of CKII in HeLa cells. However, the stable expression of Ring-H2 finger-disrupted CKBBP1 in HeLa cells suppresses cell proliferation and causes the accumulation of the G1/G0 peak of the cell cycle. The Ring-H2 finger motif is required for maximal CKBBP1 phosphorylation by CKII, suggesting that the stable binding of CKBBP1 to CKII is necessary for its efficient phosphorylation. Taken together, these results suggest that the complex formation of $CKII{\beta}$ with CKBBP1 and/or CKII-mediated CKBBP1 phosphorylation is important for the G1/S phase transition of the cell cycle.

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Hwang Han-Joon;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.247-255
    • /
    • 2006
  • Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

사람 선유아세포 인터페론(Hu IFN-$\beta$)에 대한 단 Clone성 항체생산세포의 조작과 그 성질에 관한 연구 (Preparation and Characterization of Cell Hybrids Producing a Monoclonal Antibody to Human Fibroblast Interferon (Hu IFN-$\beta$))

  • 김현수;현형환;최경희;문홍모;유무영
    • 한국미생물·생명공학회지
    • /
    • 제14권3호
    • /
    • pp.219-223
    • /
    • 1986
  • 사람 선유아세포 인터페론의 정제에 사용되는 단 clone성 항체생산 세포주를 조작하기 위하여 BA-LB/C mouse의 복강과 꼬리정맥을 통하여 HuIFN-$\beta$를 면역화시키고 그 비장세포(spleen cells) 와 NS-O 세포주를 세포융합 시켰다. 융합된 1300 hybrids를 ELISA방법으로 선별하고 soft agarose 방법과 limiting dilution방법으로 subcloning하여 높은 항체를 생성하는 것으로 판명된 11 hybrids를 재선별 하였다. 재선별된 11 hybrids 각각의 항체형 (Ig type)을 조사하고 최종 Protein A-sepharose와 친화성이 높은 IgG 2a/형의 clone # 4-1-19와 clone # 551-4-1을 선별하여 배양된 세포를 각각 nude(nu/nu) mouse 및 BALB/c mouse 복강에 접종배양 하였다. 이들 mouse복강액으로 부터 얻은 ascites fluid를 protein A-sepharose를 이용한 affinity column분획으로 항체를 정제하였으며 ascites fluid $m{\ell}$당 약 4mg의 정제된 항체를 얻을 수 있었고 SDS-polyacrylamide gel상에서 전기영동 시킨 결과 분자량 14-16만 dalton으로 추정되는 항체를 확인할 수 있었다.

  • PDF

Physicochemical and Sensorial Properties of Probiotic Yogurt as Affected by Additions of Different Types of Hydrocolloid

  • Bahrami, Masoud;Ahmadi, Dariush;Alizadeh, Mohammad;Hosseini, Fakhrisadat
    • 한국축산식품학회지
    • /
    • 제33권3호
    • /
    • pp.363-368
    • /
    • 2013
  • The main attributes of yogurt that affect consumer satisfaction are taste, consistency, and a firm texture. This study evaluates the influence of xanthan gum, barley beta-glucan, and guar gum in concentrations of 0.05%, 0.1%, 0.2%, and 0.3% on probiotic yogurt. The set-type yogurt samples were prepared by using raw cow's milk. The statistical analysis showed that none of these gum additions had any marked effect on pH, titratable acidity, total solids content, and probiotic bacteria counts of yogurt samples. Evaluations for syneresis and water-holding capacity (WHC) in the yogurt samples were affected by the type and concentration of the stabilizer. Yogurts treated with 0.1% xanthan gum and 0.3% beta-glucan recorded the highest WHC and the least syneresis. The largest amount of gel firmness was recorded in yogurt samples treated with 0.2% xanthan gum and 0.3% beta-glucan. Yogurt samples treated with 0.1% xanthan gum and 0.3% beta-glucan were considered acceptable by trained panelists and gained the highest scores in sensory evaluations. The correlation coefficient between the amount of syneresis, WHC and stiffness of texture was significant compared to scores for sensory evaluation (p<0.01). Results for effects of guar gum on the tested parameters were contrary to the results expected from a gum. According to this study, the use of xanthan gum and beta-glucan are highly recommended for low-fat yogurt production.

진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과 (Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract)

  • 이민호;김형진;정현아;이영근
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1857-1862
    • /
    • 2013
  • 교원질을 비롯한 세포외기질의 생합성을 통해 피부장력과 탄력 등 피부 특성을 제공하는 진피섬유모세포는 피부노화와 함께 활성이 감소되어 주름 형성의 이유가 된다. 따라서 젊고 건강한 피부를 유지하기 위해서는 진피섬유 모세포의 활성화가 큰 의미를 지닌다. 본 연구에서는 대복피 에탄올추출물이 진피섬유모세포의 세포외기질 합성에 미치는 영향을 ELISA, Western blot analysis 및 RT-PCR 등의 in vitro 평가법으로 측정하였다. ELISA와 western blot analysis에서 대복피추출물은 제1형 교원질, fibronectin, transforming growth factor-${\beta}1$ (TGF-${\beta}1$)의 생성을 촉진시켰고, RT-PCR에서는 COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF), insulin growth factor (IGF)-1의 유전자 발현을 증가시켰다. 이상의 결과로부터 대복피추출물은 진피섬유모세포에서 세포외기질의 생성을 촉진시키는 천연소재인 것으로 판단되었다.

Effects of Ovariectomy on Insulin Resistance and β-Cell Function and Mass

  • Choi, Soo-Bong;Park, Chun-Hee;Jun, Dong-Wha;Jang, Jin-Sun;Park, Sun-Min
    • Preventive Nutrition and Food Science
    • /
    • 제9권4호
    • /
    • pp.367-373
    • /
    • 2004
  • The prevalence of type-2 diabetes increases remarkably in post-menopausal women, possibly because insulin secretion fails to compensate for the insulin resistance induced in various tissues by estrogen insufficiency. However, this has not been fully defined. Therefore, the present study investigated whether an ovariectomy (OVX) would increase insulin resistance and decrease the $\beta$-cell function and mass in female rats with and without a $90\%$ pancreatectomy (Px). Female rats aged 15 weeks were divided into four groups: 1) OVX + Px, 2) SOVX (sham operation of OVX) + Px, 3) OVX + SPx (sham operation of Px), and 4) SOVX + SPx, and given a $30\%$ fat diet for 8 weeks. At the end of the experimental period, the islet function and insulin resistance were determined using a hyperglycemic clamp and a euglycemic hyperinsulinemic clamp, respectively. The OVX only increased the body weight in the SPx rats, which was partially related to the food intake. Yet, the OVX did increase the peripheral insulin resistance, while the Px increased this resistance further. The OVX and Px both exacerbated the islet function, as measured by the insulin secretion pattern, while delaying and decreasing the first-phase insulin secretion. The OVX only decreased the proliferation of $\beta$-cells in the Px rats, while increasing apoptosis in both the Px and SPx rats. As a result, the OVX decreased the $\beta$-cell mass in the Px rats, but increased the mass in the SPx rats. In conclusion, an OVX was found to accelerate the development and progression of diabetes by increasing the insulin resistance and decreasing the $\beta$-cell mass. Therefore, menopause can be a risk factor for type-2 diabetes, mainly due to a deceased proliferation of $\beta$-cells.

Protein Arginine Methyltransferase 1 Methylates Smurf2

  • Cha, Boksik;Park, Yaerin;Hwang, Byul Nim;Kim, So-young;Jho, Eek-hoon
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.723-728
    • /
    • 2015
  • Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.

소금민감성유전자와 비만 (Salt-sensitive genes and their relation to obesity)

  • 전용필;이명숙
    • Journal of Nutrition and Health
    • /
    • 제50권3호
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.