Browse > Article

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae  

Ha Chang-Hoon (School of Life Sciences and Biotechnology, Korea University)
Yun Cheol-Won (School of Life Sciences and Biotechnology, Korea University)
Paik Hyun-Dong (Division of Animal Life Science, Kon-Kuk University)
Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Kang Chang-Won (Division of Animal Life Science, Kon-Kuk University)
Hwang Han-Joon (Department of Food and Biotechnology, Korea University)
Chang Hyo-Ihl (School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.2, 2006 , pp. 247-255 More about this Journal
Abstract
Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.
Keywords
Mannoprotein; yeast cell wall; random mutation; immune activity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Ballou, L., P. K. Tsai, A. Dell, and C. E. Ballou. 1989. Protein glycosylation defects in the Saccharomyces cerevisiae mnn7 mutant class. Support for the stop signal proposed for regulation of outer chain elongation. J. Biol. Chem. 264: 11857-11864
2 Fedre, K. 1994. Review: Cell wall assembly in yeast. Yeast 10: 851-859   DOI   ScienceOn
3 Hoffman, O. A. and A. H. Limper. 1993. Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J. Immunol. 150: 3932-3940
4 Kramer, S. M. and M. E. Carver. 1986. Serum-free in vitro bioassay for the detection of tumor necrosis factor. J. Immunol. Methods 93: 201-208   DOI   ScienceOn
5 Kurihara, K., N. N. Miura, S. Horie, Y. Usui, Y. Adachi, T. Yadomae, and N. Ohno. 2003. Effect of CAWS, a mannoprotein-beta-glucan complex of Candida albicans, on leukocyte, endothelial cell, and platelet functions in vitro. Biol. Pharm. Bull. 26: 233-240   DOI   ScienceOn
6 Lu, C. F., R. C. Montun, J. L. Brown, F. Kiis, J. Kurjan, H. Bussey, and P. N. Lipke. 1995 Glycosyl phosphatidylinositol-dependent cross-linking of agglutinin and (1,6)-glucan in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 128: 333- 340   DOI
7 Mrsa, V. and W. Tanner. 1999. Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15: 813-820   DOI   ScienceOn
8 Roman, K., E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis, and E. Cabib. 1997. Architecture of the yeast cell wall. J. Biol. Chem. 272: 17762-17775   DOI   ScienceOn
9 Sakurai, T. and T. Yadomae. 1999. Effects of fungal glucan and interferon on the secretory functions of murine alveolar macrophages. J. Leuk. Biol. 60: 118-124
10 Schnyder, J. and M. Baggiolini. 1978. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. Exp. Med. 148: 435-439   DOI   ScienceOn
11 Schnyder, J. and M. Baggiolini. 1980. Induction of plasminogen activator secretion in macrophages by electrochemical stimulation of the hexose monophosphate shunt with methylene blue. Proc. Natl. Acad. Sci. USA 77: 414- 419
12 Ding, A. H. and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407-2412
13 Goundar, R. and V. H. Mulimani. 2004. Purification and characterization of guar galactomannan degrading alpha-galactosidase from Aspergillus oryzae DR-5. J. Microbiol. Biotechnol. 14: 863-867
14 McCammon, M. T. and L. W. Parks. 1982. Enrichment for auxotrophic mutants in Saccharomyces cerevisiae using the cell wall inhibitor, echinocandin B. Mol. Gen. Genet. 186: 295-297   DOI
15 Van Rinsum, J. and H. van den Ende. 1991. Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9. Yeast 7: 717-726   DOI   ScienceOn
16 Fleet, G. H. and D. J. Manners. 1976. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces. J. Gen. Microbiol. 94: 180-192   DOI   ScienceOn
17 Lee, J. N., I. H. Ji, G. E. Kim, H. N. Kim, J. W. Sohn, S. D. Kim, and C. W. Kim. 2001. Purification of soluble beta glucan with immune enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem. 65: 837- 841   DOI   ScienceOn
18 Kozel, T. R., A. Percival, and Q. Zhou. 2004. Biological activities of naturally occurring antibodies reactive with Candida albicans mannan. Infect. Immun. 72: 209-218   DOI
19 Jamas, S., C. K. Rha, and A. J. Sinskey. 1986. Morphology of yeast cell wall as affected by genetic manipulation of (1-6) glycosidic linkage. Biotech. Bioeng. 28: 769-784   DOI   ScienceOn
20 Yu, K. W., K. S. Shin, Y. M. Choi, and H. J. Suh. 2004. Macrophage stimulating activity of exo-biopolymer from submerged culture of Lentinus Edodes with rice bran. J. Microbiol. Biotechnol. 14: 658-664
21 de Nobel, J. G., J. Priem, T. Munnik, and H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6: 491-499   DOI   ScienceOn
22 Fels, A. O., E. L. Abraham, and Z. A. Cohn. 1986. Compartmentalized regulation of macrophage arachidonic acid metabolism. J. Exp. Med. 163: 752-757   DOI   ScienceOn
23 Van Berkel, M. A., R. C. Montijn, and F. M. Klis. 1994. Glycosylation of chimaeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Lett. 349: 135-138   DOI   ScienceOn
24 Shibata, N., K. Mizugami, K. Takano, and S. Suzuki. 1983. Isolation of mannan-protein complexes from viable cells of Saccharomyces cerevisiae X2180-1A wild type and Saccharomyces cerevisiae X2180-1 A-5 mutant strains by the action of zymolyase-60,000. J. Bacteriol. 156: 552-558
25 Ha, C. H., Y. T. Kim, S. T. Lim, C. W. Kim, and H. I. Chang. 2002. Analysis of alkali-soluble glucan produced by Saccharomyces cerevisiae wild-type and mutants. Appl. Microbiol. Biotechnol. 58: 370-377   DOI
26 Koh, J. H., J. M. Kim, and H. J. Suh. 2003. Immune enhancing effect by orally-administered mixture of Saccharomyces cerevisiae and fermented rice bran. J. Microbiol. Biotechnol. 13: 196-201
27 Mrsa, V. and S. Barbaric. 1992. Binding of Saccharomyces cerevisiae extracellular proteins to glucane. Arch Biochem. Biophys. 296: 569-574   DOI   ScienceOn
28 Esteban, A. and J. Meseguer. 2004. Glucan receptor but not mannose receptor is involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) blood leucocytes. Fish Shellfish Immunol. 16: 447- 451   DOI   ScienceOn
29 Fleet, G. H. 1991. Cell walls, pp. 199-210. In: The Yeasts. vol. 4. Academic Press, London
30 Schnyder, J. and M. Baggiolini. 1978. Role of phagocytosis in the activation of macrophages. J. Exp. Med. 148: 1449- 1454   DOI   ScienceOn
31 Yim, S. B. and Y. H. Chung. 2004. Construction and production of concatameric human TNF receptor-immunoglobulin fusion proteins. J. Microbiol. Biotechnol. 14: 81-89
32 Ito, H., S. Kuroda, H. Sakamoto, J. Kajihara, T. Kiyota, H. Hayashi, M. Kato, and M. Seko. 1986. Molecular cloning and expression in Escherichia coli of the cDNA coding for rabbit tumor necrosis factor. DNA 5: 149-156   DOI   ScienceOn
33 Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis and E. Cabib. 1997. Architecture of the yeast cell wall. Beta$(1{\rightarrow}6)$-glucan interconnects mannoprotein, beta$(1{\rightarrow})$3-glucan, and chitin. J. Biol. Chem. 272: 17762-17775   DOI   ScienceOn
34 Marletta, M. A. 1989. Nitric oxide: Biosynthesis and biological significance. Trends Biochem. Sci. 14: 488-493   DOI   ScienceOn
35 Caro, L. H., J. H. Vossen, A. F. Ram, H. van den Ende, and F. M. Klis. 1997. In silicio identification of glycosyl-phosphatidylinositol- anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13: 1477- 1489   DOI   ScienceOn