DOI QR코드

DOI QR Code

Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract

진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과

  • Received : 2013.01.29
  • Accepted : 2013.04.11
  • Published : 2013.04.30

Abstract

Dermal fibroblasts produce the many components of the extracellular matrix (ECM) that are needed to maintain connective tissue integrity and repair tissue injuries. This study investigated the effects of Areca catechu extract (ACE) on dermal fibroblast cell activation. Cultured human dermal fibroblasts were treated with ACE, and then ECM production was determined by ELISA, Western blot and RT-PCR. ACE significantly accelerated the production of type 1 collagen, fibronectin, and transforming growth factor (TGF)-${\beta}1$ by ELISA and type 1 collagen by Western blot assay. ACE also increased the gene expression of COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF) and insulin growth factor (IGF)-1. These results suggest that ACE has the potential to stimulate ECM production and that it might be suitable for maintaining skin texture.

교원질을 비롯한 세포외기질의 생합성을 통해 피부장력과 탄력 등 피부 특성을 제공하는 진피섬유모세포는 피부노화와 함께 활성이 감소되어 주름 형성의 이유가 된다. 따라서 젊고 건강한 피부를 유지하기 위해서는 진피섬유 모세포의 활성화가 큰 의미를 지닌다. 본 연구에서는 대복피 에탄올추출물이 진피섬유모세포의 세포외기질 합성에 미치는 영향을 ELISA, Western blot analysis 및 RT-PCR 등의 in vitro 평가법으로 측정하였다. ELISA와 western blot analysis에서 대복피추출물은 제1형 교원질, fibronectin, transforming growth factor-${\beta}1$ (TGF-${\beta}1$)의 생성을 촉진시켰고, RT-PCR에서는 COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF), insulin growth factor (IGF)-1의 유전자 발현을 증가시켰다. 이상의 결과로부터 대복피추출물은 진피섬유모세포에서 세포외기질의 생성을 촉진시키는 천연소재인 것으로 판단되었다.

Keywords

References

  1. KDA Textbook Editing Board. Dermatology (5th Ed.). p.11-33, Ryo Moon Gak, 2008.
  2. J. Uitto. Connective tissue biochemistry of the aging dermis. Age-related alterations in collagen and elastin. Dermatologic Clinics, 4, 433-446, 1986.
  3. T. Kanzaki, N. Morisaki, R. Shiina, Y. Saito. Role of transforming growth factor-beta pathway in the mechanism of wound healing by saponin from Ginseng Radix rubra. Br J Pharmacol, 125, 255-262, 1998. DOI: http://dx.doi.org/10.1038/sj.bjp.0702052
  4. C. P. Kiritsy, A. B. Lynch, S. E. Lynch. Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med, 4, 729-760, 1993. https://doi.org/10.1177/10454411930040050401
  5. K. Haukipuro, J. Melkko, L. Risteli, M. Kairaluoma, J. Risteli. Synthesis of type I collagen in healing wounds in humans. Ann Surg, 213, 75-80, 1991. DOI: http://dx.doi.org/10.1097/00000658-199101000-00013
  6. Y. Kishimoto, N. Saito, K. Kurita, K. Shimokado, N. Maruyama, A. Ishigami. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem Biophys Res Commun, 430, 579-584, 2013. DOI: http://dx.doi.org/10.1016/j.bbrc.2012.11.110
  7. M, D. Adil, P. Kaiser, N. K. Satti, A. M. Zargar, R. A. Vishwakarma, S. A. Tasduq. Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J Ethnopharmacol, 132, 109-114, 2010. DOI: http://dx.doi.org/10.1016/j.jep.2010.07.047
  8. M. H. Jin, S. G. Park, Y. L. Hwang, M. H. Lee, N. J. Jeong, S. S. Roh, Y. Lee, C. D. Kim, J. H. Lee. Cedrol enhances extracellular matrix production in dermal fibroblasts in a MAPK-dependent manner. Ann Dermatol, 24, 16-21, 2012. DOI: http://dx.doi.org/10.5021/ad.2012.24.1.16
  9. M. Kumar, A. Kannan, R. K. Upreti. Effect of betel/areca nut (Areca catechu) extracts on intestinal epithelial cell lining. Vet Hum Toxicol, 42, 257-260, 2000.
  10. N. S. Chu. Effects of Betel chewing on the central and autonomic nervous systems. J Biomed Sci, 8, 229-236, 2001. DOI: http://dx.doi.org/10.1007/BF02256596
  11. S. H. Lee, S. Y. Kim, K. H. Son, S. J. Kang, S. Y. Chang, J. H. Park, K. S. Lee. Isolation and quantitative determination of arecoline from Arecae semen. Kor J Pharm, 32, 39-42, 2001.
  12. S. Ohata, N. Sato, S. H. Tu, M. SHinoda. Protective effect of Taiwan crude drugs on experimental live injuries. Yakugaku Zasshi, 113, 870-880, 1993. https://doi.org/10.1248/yakushi1947.113.12_870
  13. S. S. Roh, M. H. Lee, Y. L. Hwang, H. H. Song, M. H. Jin, S. G. Park, C. K. Lee, C. D. Kim, T. J. Yoon, J. H. Lee. Stimulation of the extracellular matrix production in dermal fibroblasts by velvet antler extract. Ann Dermatol, 22, 173-179, 2010. DOI: http://dx.doi.org/10.5021/ad.2010.22.2.173
  14. M. H. Lee, C. D. KIm, H. J. Ahn. Evaluation of surfactant cytotoxicity potential by neutral red utake assay, MTT assay and cell protein assay. Korean J Toxiciol, 10, 215-220, 1994.
  15. Y. W. Wang, J. H. Ren, K. Xia, S. H. Wang, T. F. Yin, D. H. Xie, L. H. Li. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study. J Zhejiang Univ Sci B, 13, 997-1005, 2012. DOI: http://dx.doi.org/10.1631/jzus.B1200055
  16. C. C. Liang, A. Y. Park, J. L. Guan. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc, 2, 329-333, 2007. DOI: http://dx.doi.org/10.1038/nprot.2007.30
  17. J. H. Chung. Photoaging in Asians. Photodermatol Photoimmunol Photomed, 19, 109-121, 2003. DOI: http://dx.doi.org/10.1034/j.1600-0781.2003.00027.x
  18. L. F. Brown, D. Dubin, L. Lavigne, B. Logan, H. F. Dvorak, L. Van de Water. Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am J Pathol, 142, 793-801, 1993.
  19. R. A. Ignotz, J. Massague. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem, 261, 4337-4345, 1986.
  20. K. J. Rolfe, J. Richardson, C. Vigor, L. M. Irvine, A. O. Grobbelaar, C. Linge. A role for TGF-beta1-induced cellular responses during wound healing of the non-scarring early human fetus? J Invest Dermatol, 127, 2656-2667, 2007. DOI: http://dx.doi.org/10.1038/sj.jid.5700951
  21. J. Massague, Y.G. Chen. Controlling TGF-beta signaling. Genes Dev, 14, 627-644, 2000.
  22. R. F. Diegelmann, M. C. Evans. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci, 9, 283-289, 2004. DOI: http://dx.doi.org/10.2741/1184
  23. M. Martinez-Ferrer, A. R. Afshar-Sherif, C. Uwamariya, B. Crombrugghe, J. M. Davidson, N. A. Bhowmick. Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am J Pathol, 176, 98-107, 2010. DOI: http://dx.doi.org/10.2353/ajpath.2010.090283
  24. T. A. Mustoe, G. F. Pierce, A. Thomason, P. Gramates, M. B. Sporn, T. F. Deuel. Accelerated healing of incisional wounds in rats induced by transforming growth factor-b. Science, 237, 1333-1336, 1987. DOI: http://dx.doi.org/10.1126/science.2442813
  25. E. Emmerson, L. Campbell, F. G. Davies, N. L. Ross, G. S. Ashcroft, A. Krust, P. Chambon, M. J. Hardman. Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ER${\alpha}$ cross talk. J Invest Dermatol, 132, 2838-2848, 2012. DOI: http://dx.doi.org/10.1038/jid.2012.228
  26. G. P. Marti, P. Mohebi, L. Liu, J. Wang, T. Miyashita, J. W. Harmon. KGF-1 for wound healing in animal models. Methods Mol Biol, 423, 383-391, 2008. DOI: http://dx.doi.org/10.1007/978-1-59745-194-9_30