Top-k 질의는 데이터베이스에서 사용자가 가장 원하는 k개의 객체를 구하는 질의이다. Top-k 질의를 효율적으로 처리하는 대표적인 연구로 Partitioned-Layer Index (간단히, PL-index) 방법이 있다. PL-index는 데이터베이스를 여러 개의 더 작은 데이터베이스로 분할하고 각 분할된 데이터베이스에 대해 sublayer들의 list (간단히, sublayer list)를 구성한다. 이때, 분할된 데이터베이스에 대해서 top-i 결과가 될 수 있는 객체들을 그 분할된 데이터베이스에 대한 i번째 sublayer로 구성한다. 그리고 주어진 질의에 맞춰 그 sublayer list들을 병합함으로써 질의 결과를 구한다. PL-index는 질의 처리 시 데이터베이스로부터 읽어 들이는 객체의 개수가 매우 작다는 장점을 가지지만, sublayer list들을 병합할 때에 임의 접근(random access)이 많이 발생하기 때문에 디스크 기반의 데이터베이스 환경에서 질의 처리 성능이 저하된다. 이에 본 논문에서는 임의 접근 횟수를 줄임으로써 디스크 기반의 데이터베이스 환경에서 PL-index의 질의 처리 성능을 크게 향상시키는 요약된(Abstracted) Partitioned-Layer Index (간단히, APL一index)를 제안한다. 먼저, PL-index의 각 sublayer를 가상의 (점) 객체로 요약함으로써 sublayer list들을 이러한 점 객체들의 list들(즉, APL-index)로 변형한다. 그리고 APL-index에 대해 질의 처리를 가상으로 수행하여 실제 질의 처리 시 접근할 sublayer를 예측한다, 그리고 예측된 sublayer들을 sublayer list별로 한꺼번에 읽어 들임으로 PL-index에서 발생하는 임의 접근 횟수를 줄인다. 합성 데이터와 실제 데이터에 대한 실험을 통하여 제안한 APL-index가 PL-index의 임의 접근 횟수를 크게 줄일 수 있음을 보인다.