Recently, there are many researches have been studying for analyzing user interests and emotions based on users profiles and diverse information from Social Network Services (SNSs) due to their popularities. However, most of traditional researches are focusing on their researches based on single resource such as text, image, hash tag, and more, in order to obtain what user emotions are. Hence, this paper propose a method for obtaining user emotional information by analyzing texts and images both from Instagram which is one of the well-known image based SNSs. In order to extract emotional information from given images, we firstly apply GRAB-CUT algorithm to retrieve objects from given images. These retrieved objects will be regenerated by their representative colors, and compared with emotional vocabulary table for extracting which vocabularies are the most appropriate for the given images. Afterward, we will extract emotional vocabularies from text information in the comments for the given images, based on frequencies of adjective words. Finally, we will measure WUP similarities between adjective words and emotional words which extracted from the previous step. We believe that it is possible to obtain more precise user emotional information if we analyzed images and texts both time.