Scientific communication is an information exchange activity between scientists. Scientific communication is carried out in a variety of informal and formal ways. Basically, informal communication takes place by word of mouth, whereas formal communication occurs via the written word. Science is a highly interdependent activity in which each scientist builds upon the work of colleagues past and present. Consequently, science depends heavily on scientific communication. In this study, three mathematical models, namly Brillouin measure, logistic equation, and Markov chain are examined. These models provide one with a means of describing and predicting the behavior of scientific communication process. These mathematical models can be applied to construct quality filtering algorithms for subject literature which identify synthesized elements (authors, papers, and journals). Each suggests a different type of application. Quality filtering for authors can be useful to funding agencies in terms of identifying individuals doing the best work in a given area or subarea. Quality filtering with respect to papers can be useful in constructing information retrieval and dissemination systems for the community of scientists interested m the field. The quality filtering of journals can be a basis for the establishment of small quality libraries based on local interests in a variety of situations, ranging from the collection of an individual scientist or physician to research centers to developing countries. The objective of this study is to establish the theoretical framework for informetrics which is defined as the quantitative analysis of scientific communication, by investigating mathematical models of scientific communication.