In the developed NMR hyperpolarization techniques, Signal amplification by reversible exchange (SABRE) technique is thought to be a promising method to overcome the low sensitivity of bio-NMR/MRI. Most experiments using SABRE have been done in methanol, which is biologically harmful solvent. Therefore, more biological friendly solvent, such as ethanol can be more appropriate solvent to be applicable in bio-NMR and MRI. As the proof of concept, successful hyperpolarization on pyridine via SABRE is carried out in ethanol and its enhancement factor is calculated to be more than 150 folds. To investigate more about its possibility of hyperpolarization in different alcohol solvents, methanol and propanol are used for SABRE in the same condition. The overall polarization trend in different external magnetic field is similar but its polarization number is decreased with higher molecular weight solvents (the order from methanol to propanol). This result indicates that the efficiency of SABRE is different from solvent system despite its same functional group and similar properties. Higher para-hydrogen concentration, higher partial pressure of para-hydrogen, and deuterated solvent can increase the hyperpolarization in any solvents. With these series of successful SABRE results, future studies on SABRE in more biofriendly environment, on more various solvent systems, and with more substrates are needed and it will be the firm basis for applying the SABRE system on the future bio-NMR/MRI.