DOI QR코드

DOI QR Code

Signal amplification by reversible exchange in various alcohol solvents

  • Received : 2021.12.17
  • Accepted : 2021.12.20
  • Published : 2021.12.20

Abstract

In the developed NMR hyperpolarization techniques, Signal amplification by reversible exchange (SABRE) technique is thought to be a promising method to overcome the low sensitivity of bio-NMR/MRI. Most experiments using SABRE have been done in methanol, which is biologically harmful solvent. Therefore, more biological friendly solvent, such as ethanol can be more appropriate solvent to be applicable in bio-NMR and MRI. As the proof of concept, successful hyperpolarization on pyridine via SABRE is carried out in ethanol and its enhancement factor is calculated to be more than 150 folds. To investigate more about its possibility of hyperpolarization in different alcohol solvents, methanol and propanol are used for SABRE in the same condition. The overall polarization trend in different external magnetic field is similar but its polarization number is decreased with higher molecular weight solvents (the order from methanol to propanol). This result indicates that the efficiency of SABRE is different from solvent system despite its same functional group and similar properties. Higher para-hydrogen concentration, higher partial pressure of para-hydrogen, and deuterated solvent can increase the hyperpolarization in any solvents. With these series of successful SABRE results, future studies on SABRE in more biofriendly environment, on more various solvent systems, and with more substrates are needed and it will be the firm basis for applying the SABRE system on the future bio-NMR/MRI.

Keywords

Acknowledgement

이 논문은 2020학년도 서울여자대학교 연구년수혜 및 2021 교내 연구비 지원을 받았음

References

  1. H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015) https://doi.org/10.6564/JKMRS.2015.19.3.124
  2. J. Im, and J. H. Lee, J. Kor. Magn. Reson. Soc. 21, 1 (2017) https://doi.org/10.6564/JKMRS.2017.21.1.01
  3. T. Walker, and W. Happer, Rev. Mod. Phys. 69, 629 (1997) https://doi.org/10.1103/RevModPhys.69.629
  4. C. Witte, and L. Schroeder, NMR Biomed. 26, 788 (2013) https://doi.org/10.1002/nbm.2873
  5. C. Bowers, and D. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986) https://doi.org/10.1103/PhysRevLett.57.2645
  6. J. Natterer, and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997) https://doi.org/10.1016/S0079-6565(97)00007-1
  7. K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.114
  8. K. V. Kovtunov, O. G. Salnikov, V. V. Zhivonitko, I. V. Skovpin, V. I. Bukhtiyarov, and I. V. Koptyug, Top Catal. 59, 1686 (2016) https://doi.org/10.1007/s11244-016-0688-6
  9. U. Obenaus, S. Lang, R. Himmelmann, and M. Hunger, J. Phys. Chem. C, 121, 9953 (2017) https://doi.org/10.1021/acs.jpcc.7b01899
  10. K. H. Kim, J. W. Choi, C. S. Kim, and K. Jeong, Fuel 255, 115845 (2019) https://doi.org/10.1016/j.fuel.2019.115845
  11. J. Shim, and K. Jeong, J. Kor. Magn. Reson. Soc. 22, 1 (2018) https://doi.org/10.6564/JKMRS.2018.22.1.001
  12. H. So, and K. Jeong, J. Kor. Magn. Reson. Soc. 23, 6 (2019) https://doi.org/10.6564/JKMRS.2019.23.1.006
  13. O. G. Salnikov, K. V. Kovtunov, and I. V. Koptyug, Sci. Rep. 5, 13930 (2015) https://doi.org/10.1038/srep13930
  14. F. Reineri, T. Boi, and S. Aime, Nature Comm, 6, 5858 (2015) https://doi.org/10.1038/ncomms6858
  15. T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, and A. L. Balch, J. Am. Chem. Soc. 109, 8089 (1987) https://doi.org/10.1021/ja00260a026
  16. R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. Lopez-Serrano, and D.C. Williamson, Science 323, 1708 (2009) https://doi.org/10.1126/science.1168877
  17. S. Min, H. Chae, H. J. Jeong, K. Kim, S. K. Namgoong, and K. Jeong, Analyst 146, 6478 (2021)
  18. H. J. Jeong, S. Min, and K. Jeong, Analyst 145, 6478 (2020) https://doi.org/10.1039/D0AN00967A
  19. H. Chae, S. Min, H. J. Jeong, S. K. Namgoong, S. Oh, K. Kim, and K. Jeong, Anal. Chem. 92, 10902 (2020) https://doi.org/10.1021/acs.analchem.0c01270
  20. S. Kim, S. Min, H. Chae, H. J. Jeong, S. K. Namgoong, S. Oh, and K. Jeong, Molecules 25, 3347 (2020) https://doi.org/10.3390/molecules25153347
  21. T. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, and E. Y. Chekmenev, J. Am. Chem. Soc.137, 1404 (2015). https://doi.org/10.1021/ja512242d
  22. W. Jiang, L. Lumata, W. Chen, S. Zhang, Z. Kovacs, A. D. Sherry, and C. Khemtong, Sci. Rep. 9104 (2015)
  23. T. Theis, M. Truong, A. M. Coffey, E. Y. Chekmenev, and W. S. Warren, J. Magn. Reson. 248, 23 (2014) https://doi.org/10.1016/j.jmr.2014.09.005
  24. F. Shi, A. M. Coffey, K. W Waddell. E. Y. Chekmenev, and B. M. Goodson, Angew. Chem. Int. Ed. 53, 7495 (2014) https://doi.org/10.1002/anie.201403135
  25. H. J. Jeong, S. Min, H. Chae, S. Kim, G. Lee, S. K. Namgoong, and K. Jeong, Sci. Rep. 10, 1 (2020) https://doi.org/10.1038/s41598-019-56847-4
  26. K. Them, F. Ellermann, A. N. Pravdivtsev, O. G. Salnikov, I. V. Skovpin, I. V. Koptyug, R. Herges, and J. B. Hovener, J. Am. Chem. Soc. 143, 13694 (2021) https://doi.org/10.1021/jacs.1c05254
  27. S. Lehmkuhl, M. Emondts, L. Schubert, P. Spannring, J. Klankermayer, B. Blumich, and P. M. Schleker, Chem. Phys. Chem 18, 2426 (2017) https://doi.org/10.1002/cphc.201700750
  28. J. F. P. Colell, M. Emondts, A. W. J. Logan, K. Shen, J. Bae, R. V. Shchepin, G. X. Ortiz, P. Spannring, Q. Wang, S. J. Malcolmson, E. Y. Chekmenev, M. C. Feiters, F. P. J. T. Rutjes, B. Blumich, T. Theis, and W. S. Warren, J. Am. Chem. Soc 139, 7761 (2017) https://doi.org/10.1021/jacs.7b00569
  29. K. Jeong, S. Min, H. Chae, S. K. Namgoong, Magn. Reson. Chem. 57, 44 (2019) https://doi.org/10.1002/mrc.4791
  30. K. Jeong, S. Min, H. Chae, S. K Namgoong, Magn. Reson. Chem. 56, 1089 (2018) https://doi.org/10.1002/mrc.4756