DOI QR코드

DOI QR Code

Cyclotron Resonance Line Widths in Wurtzite ZnO Structure under Circularly Oscillating Fields

  • Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
  • Received : 2021.11.29
  • Accepted : 2021.12.17
  • Published : 2021.12.20

Abstract

We study optical quantum transition line widths in relation to magnetic field dependence properties of the electrons confined in an infinite square well potential system between z = 0 and z = Lz in the z - direction. We consider two systems-one is subject to right circularly oscillating external fields and the other is subject to left circularly oscillatory external fields. Our results indicate that the line widths of right circularly oscillating external fields is larger than the line widths of left, while the opposite result is obtained for the line widths.

Keywords

Acknowledgement

This work was supported by Kyungpook National University Research Fund.

References

  1. S. Butscher, F. Milde, M. Hirtschulz, E. Malie, and A. Knorr. Appl. Phys. Lett. 91, 203103 (2007) https://doi.org/10.1063/1.2809413
  2. E. Malie, M. Hirtschulz, F. Milde, Y. Wu, J. Maultzsch, T.F. Heinz, and A Knorr, Phys. Rev. B 77(4), 045432 (2008) https://doi.org/10.1103/PhysRevB.77.045432
  3. C.S. Ting, S.C. Ying, J.J. Quinn, Phys. Rev. B 16 5394 (1977) https://doi.org/10.1103/PhysRevB.16.5394
  4. Xiaoguang Wu, F.M. Peeters, J.T. Devreese, Phys. Rev. B 34 8800 (1986) https://doi.org/10.1103/physrevb.34.8800
  5. R. Kubo, J. Phys. Soc. Jpn. 12 570 (1957) https://doi.org/10.1143/JPSJ.12.570
  6. J.R. Barker, J. Phys. C 6 2633 (1973)
  7. P. Grigoglini, G.P. Parravidini, Phys. Rev. B 125 5180 (1982)
  8. H. Mori, Progr. Theor. Phys. 33 423 (1965) https://doi.org/10.1143/PTP.33.423
  9. V.M. Kenkre, Phys. Rev. A 4 2327 (1971) https://doi.org/10.1103/PhysRevA.4.2327
  10. J.Y. Sug, S.D. Choi, Phys. Rev. E 55 314 (1997) https://doi.org/10.1103/PhysRevE.55.314
  11. J.Y. Sug, S.D. Choi, Phys. Rev. B 64 235210 (2001) https://doi.org/10.1103/physrevb.64.235210
  12. J.Y. Sug, S.H. Lee, Cent. Eur. J. Phys. 6 812 (2008)
  13. J.I. Park, H.R. Lee, Jpn. J. Appl. Phys. 51 52402 (2012) https://doi.org/10.7567/JJAP.51.052402
  14. J.I. Park, J.Y. Sug, H.R. Lee, J. Kor. Phys. Soc. 53 776 (2008) https://doi.org/10.3938/jkps.53.776
  15. J.I. Park, H.R. Lee, H.K. Lee, J. Magnetics 16 108 (2011) https://doi.org/10.4283/JMAG.2011.16.2.108
  16. J.I. Park, J. Magnetics 17 255 (2012) https://doi.org/10.4283/JMAG.2012.17.4.255
  17. J.I. Park, Appl. Sci. Converg. Technol. 29(4) 82 (2020) https://doi.org/10.5757/asct.2020.29.4.082
  18. T. Dietl, H Ohno: Mrs Bull. 28 714 (2003) https://doi.org/10.1557/mrs2003.211
  19. S. Chandra, M. Rafiee, J. Doran, and S.J. McCormack, Sol. Energ. Mat. Sol. C. 182, 331 (2018) https://doi.org/10.1016/j.solmat.2018.04.004