Browse > Article
http://dx.doi.org/10.6564/JKMRS.2021.25.4.064

Signal amplification by reversible exchange in various alcohol solvents  

Jeong, Hye Jin (Department of Chemistry, Seoul Women's University)
Namgoong, Sung Keon (Department of Chemistry, Seoul Women's University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.25, no.4, 2021 , pp. 64-69 More about this Journal
Abstract
In the developed NMR hyperpolarization techniques, Signal amplification by reversible exchange (SABRE) technique is thought to be a promising method to overcome the low sensitivity of bio-NMR/MRI. Most experiments using SABRE have been done in methanol, which is biologically harmful solvent. Therefore, more biological friendly solvent, such as ethanol can be more appropriate solvent to be applicable in bio-NMR and MRI. As the proof of concept, successful hyperpolarization on pyridine via SABRE is carried out in ethanol and its enhancement factor is calculated to be more than 150 folds. To investigate more about its possibility of hyperpolarization in different alcohol solvents, methanol and propanol are used for SABRE in the same condition. The overall polarization trend in different external magnetic field is similar but its polarization number is decreased with higher molecular weight solvents (the order from methanol to propanol). This result indicates that the efficiency of SABRE is different from solvent system despite its same functional group and similar properties. Higher para-hydrogen concentration, higher partial pressure of para-hydrogen, and deuterated solvent can increase the hyperpolarization in any solvents. With these series of successful SABRE results, future studies on SABRE in more biofriendly environment, on more various solvent systems, and with more substrates are needed and it will be the firm basis for applying the SABRE system on the future bio-NMR/MRI.
Keywords
para-hydrogen; hyperpolarization; NMR; SABRE; solvent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. So, and K. Jeong, J. Kor. Magn. Reson. Soc. 23, 6 (2019)   DOI
2 F. Reineri, T. Boi, and S. Aime, Nature Comm, 6, 5858 (2015)   DOI
3 T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, and A. L. Balch, J. Am. Chem. Soc. 109, 8089 (1987)   DOI
4 S. Min, H. Chae, H. J. Jeong, K. Kim, S. K. Namgoong, and K. Jeong, Analyst 146, 6478 (2021)
5 H. J. Jeong, S. Min, and K. Jeong, Analyst 145, 6478 (2020)   DOI
6 S. Kim, S. Min, H. Chae, H. J. Jeong, S. K. Namgoong, S. Oh, and K. Jeong, Molecules 25, 3347 (2020)   DOI
7 T. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, and E. Y. Chekmenev, J. Am. Chem. Soc.137, 1404 (2015).   DOI
8 K. Them, F. Ellermann, A. N. Pravdivtsev, O. G. Salnikov, I. V. Skovpin, I. V. Koptyug, R. Herges, and J. B. Hovener, J. Am. Chem. Soc. 143, 13694 (2021)   DOI
9 K. Jeong, S. Min, H. Chae, S. K. Namgoong, Magn. Reson. Chem. 57, 44 (2019)   DOI
10 S. Lehmkuhl, M. Emondts, L. Schubert, P. Spannring, J. Klankermayer, B. Blumich, and P. M. Schleker, Chem. Phys. Chem 18, 2426 (2017)   DOI
11 K. Jeong, S. Min, H. Chae, S. K Namgoong, Magn. Reson. Chem. 56, 1089 (2018)   DOI
12 U. Obenaus, S. Lang, R. Himmelmann, and M. Hunger, J. Phys. Chem. C, 121, 9953 (2017)   DOI
13 F. Shi, A. M. Coffey, K. W Waddell. E. Y. Chekmenev, and B. M. Goodson, Angew. Chem. Int. Ed. 53, 7495 (2014)   DOI
14 T. Theis, M. Truong, A. M. Coffey, E. Y. Chekmenev, and W. S. Warren, J. Magn. Reson. 248, 23 (2014)   DOI
15 H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015)   DOI
16 J. Im, and J. H. Lee, J. Kor. Magn. Reson. Soc. 21, 1 (2017)   DOI
17 T. Walker, and W. Happer, Rev. Mod. Phys. 69, 629 (1997)   DOI
18 C. Bowers, and D. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986)   DOI
19 J. Natterer, and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997)   DOI
20 K. V. Kovtunov, O. G. Salnikov, V. V. Zhivonitko, I. V. Skovpin, V. I. Bukhtiyarov, and I. V. Koptyug, Top Catal. 59, 1686 (2016)   DOI
21 J. Shim, and K. Jeong, J. Kor. Magn. Reson. Soc. 22, 1 (2018)   DOI
22 O. G. Salnikov, K. V. Kovtunov, and I. V. Koptyug, Sci. Rep. 5, 13930 (2015)   DOI
23 C. Witte, and L. Schroeder, NMR Biomed. 26, 788 (2013)   DOI
24 K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016)   DOI
25 K. H. Kim, J. W. Choi, C. S. Kim, and K. Jeong, Fuel 255, 115845 (2019)   DOI
26 R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. Lopez-Serrano, and D.C. Williamson, Science 323, 1708 (2009)   DOI
27 J. F. P. Colell, M. Emondts, A. W. J. Logan, K. Shen, J. Bae, R. V. Shchepin, G. X. Ortiz, P. Spannring, Q. Wang, S. J. Malcolmson, E. Y. Chekmenev, M. C. Feiters, F. P. J. T. Rutjes, B. Blumich, T. Theis, and W. S. Warren, J. Am. Chem. Soc 139, 7761 (2017)   DOI
28 H. Chae, S. Min, H. J. Jeong, S. K. Namgoong, S. Oh, K. Kim, and K. Jeong, Anal. Chem. 92, 10902 (2020)   DOI
29 W. Jiang, L. Lumata, W. Chen, S. Zhang, Z. Kovacs, A. D. Sherry, and C. Khemtong, Sci. Rep. 9104 (2015)
30 H. J. Jeong, S. Min, H. Chae, S. Kim, G. Lee, S. K. Namgoong, and K. Jeong, Sci. Rep. 10, 1 (2020)   DOI