Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.