DOI QR코드

DOI QR Code

Emulsifying Properties of Concentrated Red Ginseng Extract: Influence of Concentration, pH, NaCl

홍삼농축액 함유 유화액의 유화특성에 관한연구

  • You, Kawn-Mo (Dept. of Food Science and Technology, College of Agriculture and Life Science Chungnam National University) ;
  • Jang, Hyeon-Ho (Dept. of Food Science and Technology, College of Agriculture and Life Science Chungnam National University) ;
  • Lee, Eui-Seok (Dept. of Food Science and Technology, College of Agriculture and Life Science Chungnam National University) ;
  • Lee, Ki-Teak (Dept. of Food Science and Technology, College of Agriculture and Life Science Chungnam National University) ;
  • Hong, Soon-Taek (Dept. of Food Science and Technology, College of Agriculture and Life Science Chungnam National University)
  • 류관모 (충남대학교 농업생명과학대학 식품공학과) ;
  • 장현호 (충남대학교 농업생명과학대학 식품공학과) ;
  • 이의석 (충남대학교 농업생명과학대학 식품공학과) ;
  • 이기택 (충남대학교 농업생명과학대학 식품공학과) ;
  • 홍순택 (충남대학교 농업생명과학대학 식품공학과)
  • Received : 2017.08.01
  • Accepted : 2017.09.02
  • Published : 2017.09.30

Abstract

This study was carried out to investigate the emulsifying properties of concentrated red ginseng extract (CRGE). First, we determined the interfacial tension of CRGE at the oil-water interface. Second, oil-in-water emulsions were prepared with CRGE and then their physicochemical properties such as fat globule size, zeta-potential, dispersion stability, and microscopic characteristics were determined. It was found that interfacial tension gradually decreased with increasing CRGE concentration, indicative of some surface activity. In emulsions, fat globule size was decreased as CRGE concentration increased, showing a critical value ($d_{43}$$0.39{\mu}m$) at ${\geq}3.5wt%$ of CRGE. In addition, pH and NaCl also influenced on fat globule sizes; they were increased in acidic conditions ($pH{\leq}3$) or in higher NaCl concentration (${\geq}0.4M$) and these results were interpreted in view of the change in zeta potentials. The dispersion stability by separation analyzer ($LUMiFuge^{(R)}$) showed that it was more stable in emulsions with higher CRGE concentration (i.e., ${\geq}3.5wt%$). In conclusion, CRGE was surface-active and it could be used as an emulsifier in preparation of food emulsions.

본 연구에서는 홍삼농축액의 유화특성을 조사하였다. 먼저, 홍삼농축액의 표면활성능을 조사하였으며, 이어서 홍삼농축액 유화액을 제조하고 이의 이화학적 성질을 조사하였다. 홍삼농축액의 물/기름 계면에서 계면장력은 홍삼농축액 농도의 증가와 더불어 감소하였다. 홍삼농축액을 이용하여 유화액을 제조한 결과, 첨가 농도의 증가와 더불어 유화 지방구 크기는 감소하였으며, 홍삼농축액 농도가 3.5 wt% 이상일 경우 일정한 지방구 크기($d_{43}$$0.39{\mu}m$)의 안정한 유화액을 형성하였고, separation analyzer($LUMiFuge^{(R)}$)를 이용한 유화안정도 평가 결과에서도 이와 유사한 안정도 변화 경향을 확인할 수 있었다. 또한 홍삼농축액 유화액 중 지방구 크기는 pH 및 NaCl 농도변화에 의존하였는데, pH가 감소함에 따라 지방구 크기는 증가하고 음의 제타전위 값[-67.0 mV (pH 9.0) ${\rightarrow$ + 2.1 mV (pH 2.0)]은 낮아지는 경향을 보였으며, NaCl 농도(0.1 M ${\rightarrow$ 0.5 M)가 높을수록 지방구 크기는 증가하였다. 본 실험을 통해 홍삼농축액의 유화능을 확인할 수 있었다.

Keywords

References

  1. D. J. McClements, "Emulsion design to improve the delivery of functional lipophilic components", Annu. Rev. Food Sci. Technol. 1(1), 241-269, (2010). https://doi.org/10.1146/annurev.food.080708.100722
  2. D. J. McClements. Food emulsion: principles, practices, and technique, 3nd ed., p.100-105, Boca Raton, FL, USA, (2016).
  3. E. Dickinson. An introduction to food colloid, eds., p.1-29, Oxford University Press, Oxford, UK, (1992).
  4. M. Shields, R. Eills, BR. Saunders, "A creaming study of weakly flocculated and depletion flocculated oil-in-water emulsions". Colloid Surf. A, 178(1), 265-276, (2001). https://doi.org/10.1016/S0927-7757(00)00715-9
  5. L. Kralova, J. Sjoblom. "Surfactants used in food industry: a review". J. Dispers. Sci. Technol., 30(9), 1363-1383, (2009). https://doi.org/10.1080/01932690902735561
  6. O. Guclu-Ustundag, G. Mazza. "Saponins: properties, applications and processing". Crit. Rev. Food Sci. Nutr., 47(3), 231-258, (2007). https://doi.org/10.1080/10408390600698197
  7. D. Kiefer, T. Pantuso. "Panax ginseng". Am. Fam. Physician, 68(8), 1539-1542, (2003).
  8. Y. S. Keum, K. K. Park, J. M. Lee, K. S. Chun, J. H. Park, S. K. Lee, H. Kwon, Y. J. Surh. "Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng". Cancer Lett., 150(1), 41-48, (2000). https://doi.org/10.1016/S0304-3835(99)00369-9
  9. S. E. Kim, M. J. Kim, S. B. Han, S. K. Lee. "Ginsenoside-Rs3, a new diol-type ginseng saponin, selectively elevates protein levels of p53 and p21WAF1 leading to induction of apoptosis in SK-HEP-1 cells". Anticancer Res., 19(1), 487-491, (1999).
  10. W. Y. Kim, J. M Kim, S. B. Han, S. K. Lee, N. D. Kim, M. K. Park, C. K. Kim, J. H. Park. "Steaming of ginseng at high temperature enhances biological activity". J. Nat. Prod. 63(12), 1702-1704, (2000). https://doi.org/10.1021/np990152b
  11. S. K. Jang, Y. S. Chung, D. C. Ahn, M. J. Kang, D. G. Lee, S. H. Kim. "An experimental study on the effect of immunopotential and the anticancer effect of red ginseng extract". Korean J. Ginseng Sci., 18(3), 151-159, (1994).
  12. J. H. Choi, Y. S. Kim, K. M. Lee, H. J. Kim. "The effect of red ginseng intaking on free radical produced during aerobic exercise in the elderly". J. Ginseng Res. 28(1), 27-32, (2004). https://doi.org/10.5142/JGR.2004.28.1.027
  13. Y. Nagai, O. Tanaka, S. Shibata. "Chemical studies on the oriental plant drugs-XXIV: Structure of ginsenoside-Rg1, a neutral saponin of ginseng root". Tetrahedron, 27(5), 881-892, (1971). https://doi.org/10.1016/S0040-4020(01)92488-3
  14. Y. Yang, M. E. Leser, A. A. Sher, D. J. McClements. "Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin ($Q-Naturale^{(R)}$)". Food Hydrocoll., 30(2), 589-596, (2013). https://doi.org/10.1016/j.foodhyd.2012.08.008
  15. AOAC Official Methods Analysis 16th ed. Association of Official Analytical Chemists. p.31-37, Washington DC, USA, (1995).
  16. K. S. LEE, B. J. Seong, S. I. Kim, S. H. Han, H. H, Kim, J. Y. Won, G. H. Kim. "Changes of Fatty Acids, Minerals and Ginsenosides on Ginseng Seeds during Stratifying Treatment". Korean J. Medicinal Crop Sci., 23(5), 406-413, (2015). https://doi.org/10.7783/KJMCS.2015.23.5.406
  17. E. Dickinson and K. Pawlowsky, "Influence of ${\kappa}$-carrageenan on the properties of a protein-stabilized emulsion". Food Hydrocoll., 12(4), 417-423, (1998). https://doi.org/10.1016/S0268-005X(98)00055-1
  18. H. H. Zuidema, G. Waters. "Ring method for the determination of interfacial tension". Ind. Eng. Chem. Res., 13(5), 312-313, (1941).
  19. S. E. Yun, S. T. Hong. "Isolation and investigation of emulsifying properties of surface-active substances from rice bran". Food Hydrocoll., 21(5), 838-843, (2008) https://doi.org/10.1016/j.foodhyd.2006.11.019
  20. R. A, Chanamai, D. J. McClements. "Comparison of gum arabic, modified starch, and whey protein isolate as emulsifiers: influence of pH, CaCl2 and temperature.", J. Food Sci., 67(1), 120-125, (2002). https://doi.org/10.1111/j.1365-2621.2002.tb11370.x
  21. B. P. Binks, R. Murakami, S. P. Armes, S. Fujii. "Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles". Langmuir, 22(5), 2050-2057, (2006) https://doi.org/10.1021/la053017+
  22. T. Sobisch, D. Lerche. "Application of a new separation analyzer for the characterization of dispersions stabilized with clay derivatives.", Colloid Polym. Sci., 278(4), 369-374, (2000). https://doi.org/10.1007/s003960050527
  23. M. Kuentz, D. Rothlisberger. "Rapid assessment of sedimentation stability in dispersions using near infrared transmission measurements during centrifugation and oscillatory rheology.", Eur. J. Pharm. Biopham., 56(3), 355-361, (2003). https://doi.org/10.1016/S0939-6411(03)00108-5
  24. S. Mitra, S. R. Dungan. "Micellar properties of Quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties.", J. Agric. Food Chem., 45(5), 1587-1595, (1997) https://doi.org/10.1021/jf960349z
  25. T. S. C. Li, G. Mazza, A. C. Cottrell, L. Gao. "Ginsenosides in roots and leaves of American ginseng.", J. Agric. Food Chem., 44(3), 717-720, (1996). https://doi.org/10.1021/jf950309f
  26. D. J. McClements, L. Bai, C. Chung. "Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions.", Annu. Rev. Food Sci. Technol., 8(1), 205-236, (2017) https://doi.org/10.1146/annurev-food-030216-030154
  27. P. Walstra, In encyclopedia of emulsion technology, basic theory, eds., p.57-59, Becher, Marcel Dekker, New York, (1983).
  28. R. Jimenez-Flores, A. Ye, H. Singh. "Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin.", J. Agric. Food Chem., 53(10), 4213-4219, (2005). https://doi.org/10.1021/jf0480039
  29. H. Salminen, S. Aulbach, B. H. Leuenberger, C. Tedeschi, J. Weiss. "Influence of surfactant composition on physical and oxidative stability of Quillaja saponin-stabilized lipid particles with encapsulated ${\omega}$-3 fish oil.", Colloids Surf. B Biointerfaces, 122(1), 46-55, (2014). https://doi.org/10.1016/j.colsurfb.2014.06.045
  30. A. E. Wiącek. "Electrokinetic properties of n-tetradecane/lecithin solution emulsions", Colloids Surf. A Physicochem. Eng. Asp., 293(1), 20-27, (2007). https://doi.org/10.1016/j.colsurfa.2006.07.003
  31. P. J. Wilde. "Interfaces: their role in foam and emulsion behaviour", Curr. Opin. Colloid Interface Sci., 5(3) 176-181, (2000). https://doi.org/10.1016/S1359-0294(00)00056-X
  32. S. T. Hong. "Changes in the stability properties of methylcellulose emulsions as affected by competitive adsorption between methylcellulose and Tween 20", J. Korean Soc. Food. Sci. Nutr., 37(10), 1278-1286, (2008). https://doi.org/10.3746/jkfn.2008.37.10.1278
  33. N. A. McCarthy, A. L. Kelly, J. A. O'Mahony, D. K. Hickey, V. Hickey, M. A. Fenelon. "Effect of protein content on emulsion stability of a model infant formula." Int. Dairy J., 25(2), 80-86, (2012) https://doi.org/10.1016/j.idairyj.2012.03.003