DOI QR코드

DOI QR Code

Study on Paraffin Wax Precipitation using Model Oils

모델오일을 이용한 파라핀 왁스의 침전 연구

  • Oh, Kyeong-Seok (Department of Chemical and Environmental Technology, Inha Technical College)
  • 오경석 (인하공업전문대학 화공환경과)
  • Received : 2017.07.04
  • Accepted : 2017.09.03
  • Published : 2017.09.30

Abstract

Wax components can be precipitated when surrounding temperature decreases below wax precipitation temperature (WAT). WAT as well as pour point are important characteristics to evaluate the behavior of waxy oils. In this study, qualitative and quantitative evaluations of waxes in waxy model oils were presented after determining WAT and pour point. In case of anhydrous waxy model oils, ASTM D2500 may be most useful to determine WAT because of the transparent nature of model oils. With same apparatus, ASTM D97 is also applicable to determine the pour point of waxy oils in a serial determination. In case of emulsified model oils, however, it is difficult to measure WAT because of its opaque nature. This study employed FTIR spectroscopy to determine wax precipitation temperature and discussed the effect of emulsion state regarding the values of WAT. Further study would be needed to conclude the effect of water contents to WAT values in case of emulsified waxy oil.

파라핀 왁스가 녹아있는 왁스오일은 주위 온도가 내려감에 따라 왁스의 침전이 시작된다. 침전이 시작하는 온도를 왁스생성온도라 부르며, 왁스생성온도는 유동점 측정과 함께 왁스오일의 거동연구에 중요한 정보를 제공해 준다. 본 연구에서는 왁스가 함유된 모델오일을 제조하여, 왁스의 정량과 정성적인 차이에 따른 왁스생성온도와 유동점의 변화를 살펴보았다. 물이 포함되지 않은 왁스함유 모델오일의 경우, 그 투명성으로 인해 ASTM D2500을 통해 왁스생성온도 측정이 가능하다. 또한, 유동점 측정도 같은 장치를 사용하는 ASTM D97을 사용하여 측정할 수 있다. 물이 함유된 에멀젼 모델오일의 경우에는 시료의 불투명성으로 인해 우선 유동점을 중심으로 거동을 살펴보았다. 이후 에멀젼 모델오일의 왁스생성온도 측정은 적외선분광법을 활용하여 측정하였으며, 에멀젼을 형성하는 물의 함량에 따른 왁스생성온도의 경향성은 고찰을 통해 추가적인 실험이 필요할 것으로 판단되었다.

Keywords

References

  1. Ronningsen,H. P., Bjorndal,B., Hansen, A. B., and Pedersen, W. B., Wax Precipitation from North Sea Crude Oils. 1. Crystallization and Dissolution Temperatures and Newtonian and Non-Newtonian Flow Properties, Energy Fuels, 5(6), 895 (1991). https://doi.org/10.1021/ef00030a019
  2. Merino-Garcia, D., Correra, S., Cold flow: Review of a Technology to Avoid Wax Deposition, Pet. Sci. Technol., 26(4), 446 (2008). https://doi.org/10.1080/10916460600809741
  3. Oh, K. and Deo, M.D., Yield Behavior of Gelled Waxy Oil in Water-in-Oil (w/o) Emulsion at Temperatures below Ice Formation, Fuel, 90, 2113 (2011). https://doi.org/10.1016/j.fuel.2011.02.030
  4. Peerapornlerd, S., Edvik, S., Leandro, A.P., Hinckley, R., Deo, M.D., Venkatesan, R., and Magda, J.J., Effect of Flow Shutdown Temperature on the Gelation of Slurry Flows in a waxy Oil Pipeline, Ind. Eng. Chem. Res., 54(16), 4455 (2015). https://doi.org/10.1021/ie503771w
  5. Zheng, S., Khrutphisit, T., and Fogler, H.S., Entrapment of Water Droplets in Wax Deposits from Water-in-Oil Dispersion and Its Impact on Deposit Build-Up, Energy Fuels, 31, 340 (2017). https://doi.org/10.1021/acs.energyfuels.6b02450
  6. Oh, K. and Deo, M. D., Heavy Oils and Petroleomics, O.C. Mullins, E. Y. Sheu, A. Hammami, and A. G. Marshall, eds., Springer Science+Business Media, New York, 2006, p465.
  7. Raman, A.K.Y., Koteeswaran, S., Venkataramani, D., Clark, P., Bhagwat, S., and Aichele, C.P., A Comparison of the Rheological Behavior of Hydrate Forming Emulsions Stabilized Using Either Solid Particles or a Surfactant, Fuel, 179, 141 (2016). https://doi.org/10.1016/j.fuel.2016.03.049
  8. Roehner, R. M., Dahdah, N., Fletcher, J., and Hanson, F., Comparative Compositional Study of Crude Oil Solids from the Trans Alaska Pipeline System Using High Temperature Gas Chromatography, Energy Fuels, 16, 211 (2002). https://doi.org/10.1021/ef010218m
  9. Warth, A.H., The Chemistry and Technology of Waxes, Reinhold Publishing Corp., Chapman & Hall, Ltd., London (1956).
  10. Steynberg, A.P. and Dry, M.E., Fischer-Tropsch Technology, Elsevier, Amsterdam, The Netherlands (2004).
  11. Oh, K. and Deo, M.D., Characteristics of Wax Gel Formation in the Presence of Asphaltenes, Energy Fuels, 23(3), 1289 (2009). https://doi.org/10.1021/ef8006307
  12. Ronningsen, H.P., Production of Waxy Oils on the Norwegian Continental Shelf: Experience, Challenges, and Practices, Energy Fuels, 26, 4126 (2012).
  13. Oh, K., Jemmett, M., and Deo, M.D., Yield Behavior of Gelled Waxy Oil: Effect of Stress Application in Creep Ranges, Ind. Eng. Chem. Res., 48, 8950 (2009). https://doi.org/10.1021/ie9000597
  14. Annual Book of ASTM-Standards, Petroleum Products, Lubricants, West Conshohocken, Pa.: American Society for Testing and Materials, Sec. 5. (1999).
  15. Oh, K., Characteristic Evaluation of Waxy Oil Behavior Using Vane Rheometer, J. Korean Oil Chem. Soc., 32(3), 497 (2015). https://doi.org/10.12925/jkocs.2015.32.3.497
  16. Coutinho, J.A.P. and Ruffier-Meray, V., Experiemental Measurements and Thermodynamic Modeling of Paraffinic Wax Formation in Undercooled Solutions, Ind. Eng. Chem. Res., 36, 4977 (1997). https://doi.org/10.1021/ie960817u
  17. Roehner, R. M. and Hanson, F. V. "Determination of Wax Precipitation Temperature and Amount of Precipitated Solid Wax versus Temperature for Crude Oils Using FT-IR Spectroscopy," Energy Fuels, 15(3), 756 (2001). https://doi.org/10.1021/ef010016q
  18. Oh, K., Prediction of precipitated wax amounts using FTIR spectroscopy, Korean Chem. Eng. Res., 51(3), 376 (2013). https://doi.org/10.9713/kcer.2013.51.3.376
  19. Oh, K., Prediction of Wax Appearance Temperature and Solid Wax Amount by Reduced Spectral Analysis using FTIR Spectroscopy, U.S. Patent No. 8,326,548 B2 (2012).
  20. Sun, G., Li, C., Yang, F., Yao, B., and Xian, Z., Experimental Investigation on the Gelation Process and Gel Structure of Water-in-Waxy Crude Oil Emulsion, Energy Fuels, 31, 271 (2017). https://doi.org/10.1021/acs.energyfuels.6b02253
  21. Lin, C., He, G., Dong, C., Liu, H., Xiao, G., and Liu, Y., Effect of Oil Phase Transformation on Freeze/Thaw-Induced Demulsification fo Water-in-Oil Emulsion, Langmuir, 24, 5291 (2008). https://doi.org/10.1021/la704079s