• 제목/요약/키워드: zoospores.

검색결과 72건 처리시간 0.019초

Allomyces macrogynus의 유주자와 반응하는 단일클론항체의 준비 (Preparation of the Monoclonal Antibodies against the Zppspores of Allomyces macrogynus)

  • 최소영;황정숙;김정섭;박경희;조정원;윤현주
    • 생명과학회지
    • /
    • 제6권4호
    • /
    • pp.264-269
    • /
    • 1996
  • Allomyces macrogynus의 유주자에 대한 단일클론항에를 만들었다. 고정된 유주자를 주사하거나 유주자 단백질 용액을 주사함으로서 생쥐를 면역화 하였으며, 하이브리도마 세포들은 효소면역흡착법을 이용하여 검색하였다. 약 30개의 하이브리도마 클론이 유주자에 대한 항체를 생산하는 것으로 확인 되었으며, 이들중 일부는 단일세포클론으로 분리되었다. 이들이 만들어내는 항체는 정제되어, 간법면역형광법에 의하여 유주자의 표면에 반응하는 항체로 확인되었다. 또한, 하이브리도마 배양상등액을 이용하여 유주자의 성장에 영향을 미칠 수 있는 클론을 조사하여 보았다. 조사한 배양5상등액중 두가지의 하이브리도마에서 얻은 배양상등액이 germ tube 의 성정을 촉진하는 것으로 확인되었다.

  • PDF

대황(Eisenia bicyclis) 배우체와 아포체의 생장에 미치는 환경 인자의 영향 (Effects of Environmental Factors on the Growth of Gametophytes and Young Sporophytes of Eisenia bicyclis (Kjellman) Setchell)

  • 이민정;김남길
    • 한국해양바이오학회지
    • /
    • 제12권2호
    • /
    • pp.115-122
    • /
    • 2020
  • Eisenia bicyclis, a perennial macroalga is a primary producer of in the ocean, It has been identified as a key species that plays a vital role in maintaining the ecosystem stability. Also, it is an important target in marine afforestation projects and useful marine organisms. In addition, E. bicyclis is used as a health food for humans. This study investigated the effect of water temperature, light (photon irradiance), and duration of light (photoperiod) on the growth of gametophytes and young sporophytes of E. bicyclis. The germination and growth of the zoospores of E. bicyclis were examined at five temperatures (5℃, 10℃, 15℃, 20℃ and 25℃), four intensities of photon irradiance (10, 20, 40, and 80 μmol m-2s-1), and photoperiods (14:10 and 10:14 light/dark cycles). The zoospores released from mature plant germinated into the gametophytes under all experimental conditions. The gametophytes were able to grow at water temperature 5℃-25℃ and mature at 10℃-20℃. The optimal range of water temperature for the maturation of the gametophyte was 15℃-20℃. At 25℃, E. bicyclis gametophytes grew rapidly but did not mature. The optimal culture conditions for the growth of young sporophytes grew slowly in low temperature and photon irradiances.

Infection of marine diatom Coscinodiscus wailesii(Bacillariophyceae) by the parasitic nanoflagellate Pirsonia diadema(Stramenopiles) from Yongho Bay in Korea

  • Yoo, Jiae;Kim, Sunju
    • 환경생물
    • /
    • 제38권4호
    • /
    • pp.567-577
    • /
    • 2020
  • The infection of marine diatom Coscinodiscus wailesii by a parasitic protist from the Yongho Bay of Busan, Korea was observed during the diatom bloom events in 2017 through 2018. The morphological and molecular features suggested that the parasitic nanoflagellate Pirsonia diadema was responsible for the infection. During the study period, the parasite prevalence ranged from 0.3% to 3.3%, and infected C. wailesii cells were observed only at surface seawater temperatures ranging between 10.9 and 19.9℃, although the host population appeared at temperatures above 25℃. The parasite and host system was successfully established as cultures. Using the cultures, we determined the morphological features over the infection cycle, parasite generation time, parasite prevalence as a function of inoculum size, and zoospore infectivity and survival time. The diatom C. wailesii was readily infected by the parasite P. diadema, with a parasite prevalence reaching up to 100% and a zoospore to host inoculum ratio above 20:1. The survival and infectivity of the parasite zoospores decreased with age. While the zoospores could survive up to 88 hours, they quickly lost their ability to infect after 48 hours. These results could lead to a better understanding of the biology and ecology of the parasitoid infecting the giant-sized diatoms in coastal waters.

오존처리에 의한 폐양액내 Phytophthora spp. 멸균 (Disinfection of Phytophthora spp. in Recycling Nursery Irrigation Water by Ozone Treatment)

  • 이중섭;한경숙;박종한;정승룡;장한익
    • 식물병연구
    • /
    • 제12권3호
    • /
    • pp.272-277
    • /
    • 2006
  • 수경재배지 폐양액 내 Phytophthora spp.는 일차적인 전염원이며 배양액 재사용 시 전염이 더욱 확산될 수 있다. 오존은 농업용수 및 지하수 살균을 위해 산업적으로 이용하여 왔으나 수경 재배지에서 폐양액 살균 후 재활용 목적으로 충분한 연구는 수행되지 못하였다. 본 연구에서는 폐양액 내 존재하는 4종의 Phytophthora spp.에 대하여 살균 목적으로 오존 처리 시간을 $1{\sim}9$분까지 구분하여 처리하였다. 폐양액 내 오존 7분 이상(농도 1.4 mg/l) 처리에서는 처리 시간에 관계없이 시험균주 4종 모두에서 매우 높은 살균력을 나타낸 반면 5분(농도 1.2mg/l) 이하의 저농도 처리는 충분한 살균력을 나타내지 못하였다. 한편, 7분 이상 고농도($1.4{\sim}1.7mg/l$)로 살균 처리된 폐양액을 P. nicotianae가 생장중인 배양접시에 처리한 결과 일부 배지 속 깊게 생장중인 균사체까지 살균력이 미치지 못하였다. 따라서, 본 연구 결과 완전한 폐양액 살균을 위해서는 오존 살균과 더불어 균사체 덩어리 또는 이병 잔재물을 제거할 수 있는 필터 방식과의 병행이 바람직하다.

Life History and Systematic Studies of Pseudothrix borealis gen. et sp. nov. (=North Pacific Capsosiphon groenlandicus, Ulotrichaceae, Chlorophyta)

  • Hanic, Louis A.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • 제23권2호
    • /
    • pp.119-133
    • /
    • 2008
  • We cultured a tubular marine green alga, originally identified as Capsosiphon groenlandicus (J. Agardh) K.L. Vinogradova, from Amaknak Island, Alaska. The alga had an alternation of heteromorphic generations in which tubular monoecious fronds produced quadriflagellate zoospores and/or biflagellate isogametes. The gametes fused to produce cysts or Codiolum-like zygotes with long, tortuous stalks. Cysts and codiola produced 8-16 aplanospores, which germinated in situ to yield upright fronds. Fronds arising from both aplanospores and zoospores displayed a distinctive development in which non-septate colorless rhizoids from the base of the initially uniseriate, Ulothrix-like filament were transformed into septate uniseriate Ulothrix-like photosynthetic filaments. These transformed filaments then developed new basal non-septate rhizoids. This pattern of rhizoids becoming filaments, which then produced new rhizoids, was repeated to yield a tuft of up to 50 fronds. Periclinal and longitudinal divisions occurred in each filament, starting basally, until the mature tubular thallus was achieved. Pyrenoid ultrastructure revealed several short inward extensions of chloroplast lamellae, each of which was surrounded by pyrenoglobuli. Analysis of ribosomal SSU and ITS sequences placed this alga in the family Ulotrichaceae, order Ulotrichales, together with but as a distinct species from North Atlantic Capsosiphon groenlandicus. Analysis of a partial ITS sequence from authentic Capsosiphon fulvescens, the current name of the type of the genus Capsosiphon, indicated that neither our material nor C. groenlandicus belongs in that genus, and we propose a new genus, Pseudothrix, to accommodate both species. We propose P. borealis for the North Pacific entity formerly called C. groenlandicus and make the new combination P. groenlandica for the Atlantic species.

A Comparative Study on the Rumen Microbial Population of Cattle and Swamp Buffalo Raised under Traditional Village Conditions in the Northeast of Thailand

  • Wanapat, M.;Ngarmsang, A.;Korkhuntot, S.;Nontaso, N.;Wachirapakorn, C.;Beakes, G.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권7호
    • /
    • pp.918-921
    • /
    • 2000
  • A comparative study on rumen bacterial and protozoal population and fungal zoospores in cattle (Brahman$\times$Native) and swamp buffalo (Bubalus bubalis) was conducted. Forty animals, twenty of each, with same sex and similar age which were raised under similar condition in the Northeast of Thailand, were used. Rumen digesta were sampled immediately post slaughtering for total microscopic counts of bacteria, protozoa and fungal zoospores. It was found that total bacterial population were higher in swamp buffalo that those in cattle (1.6 vs $1.36{\times}10^{8}cells/ml$) having more population of cocci, rods and ovals. Lower rumen protozoal pupulation in swamp buffalo with lower numbers of Holotrichs and Entodiniomorphs were found as compared to those in cattle. Significant higher fungal zoospore counts were in swamp buffalo than those in cattle being 7.30 and $3.78{\times}10^6$, respectively. Study under electron microscope, revealed Anaeromyces sp. with acuminate apex were more predominant in the rumen of swamp buffalo. With these findings, cattle and swamp buffaloes showing differences in rumen bacterial, protozoal population and fungal zoospore counts, offer new additional information as why swamp buffaloes exhibit conditionally better than cattle especially during long dry season without green grass.

Identification of Host-Resistant and Susceptible Varieties of Korean Grapes to Plasmopara viticola, a Pathogen Causing Grapevine Downy Mildew

  • Marc Semunyana;Sun Ha Kim;Jiyoung Min;Soo-Min Lee;Sang-Keun Oh
    • 한국균학회지
    • /
    • 제51권3호
    • /
    • pp.179-190
    • /
    • 2023
  • Grapevine downy mildew, caused by Plasmopara viticola, significantly damages vineyards and is one of the most devastating diseases affecting cultivated grapes worldwide. In this study, we characterized the phenotypic and molecular traits of 11 P. viticola isolates from four grape-growing regions in South Korea. Additionally, we investigated the diversity of pathogenicity among these isolates and conducted an assay to evaluate the response of grape cultivars to P. viticola infection. Lemon-shaped sporangia were identified in the collected isolates, which released zoospores into the suspension at room temperature. Within a few hours of inoculation, the zoospores developed germ tubes. We tested 11 P. viticola isolates for pathogenicity in 845 grape cultivars to screen for grape host resistance to downy mildew infection. Among the tested isolates, JN-9 showed the highest virulence. Grape cultivars displayed varying phenotypic reactions to P. viticola infection: approximately 7% were highly susceptible, 41% were susceptible, 20% were moderately susceptible, 8% were resistant, and 24% exhibited extreme resistance. Phylogenetic analysis based on four genomic regions (internal transcribed spacer 1 [ITS1], actin, beta-tubulin, and cytochrome c oxidase II) revealed a close evolutionary relationship among all the Korean isolates, forming a single monophyletic lineage. Notably, these isolates showed greater similarity to European isolates than to American isolates. This comprehensive study contributes to a deeper understanding of the identity and behavior of P. viticola, which is crucial for developing effective resistance strategies against this pathogen in grape cultivars cultivated in South Korea.

Quantitative detection of Pythium porphyrae and Pythium chondricola (Oomycota), the causative agents of red rot disease in Pyropia farms in China

  • Jie Liu;Sudong Xia;Huichao Yang;Zhaolan Mo;Jie Li;Yongwei Yan
    • ALGAE
    • /
    • 제39권3호
    • /
    • pp.177-186
    • /
    • 2024
  • Red rot disease is one of the notorious algal diseases that threaten the cultivation of Pyropia in China, and two Pythium pathogens, i.e., Pythium porphyrae and P. chondricola, have been reported as causative agents. To monitor the pathogens, a fluorescent quantitative polymerase chain reaction (PCR) method was developed to quantitatively detect their abundance. Using overlapping PCR and pathogen-specific primer pairs, two pathogen-specific fragments were concatenated to construct an internal standard plasmid, which was used for quantification. For zoospores of known numbers, the results showed that this method can detect as less as 100 and 10 zoospores mL-1 in a 200 mL solution for P. porphyrae and P. chondricola, respectively. Using monthly collected seawater at 10 sites in Haizhou Bay, a typical aquaculture farm in China, a significantly higher temperature and a significantly lower salinity were determined in December 2021. P. porphyrae was determined to be more abundant than P. chondricola, though with similar temporal distribution patterns from December 2021 to February 2022. When a red rot disease occurred in December 2021, the two pathogens were significantly more abundant at two infected sub-sites than the uninfected sub-site within both seawater and sediment, though they were all significantly more enriched in sediment than in seawater. The present method provides the capability to quantify and compare the abundance of two pathogens and also has the potential to forecast the occurrence of red rot disease, which is of much significance in managing and controlling the disease.

보리호위축병 바이러스에 감염된 보리조직의 세포학적 관찰 (Cytological Changes of Infected Barley Tissues with Barley Yellow Mosaic Virus)

  • 소인영;정성수
    • Applied Microscopy
    • /
    • 제20권1호
    • /
    • pp.120-127
    • /
    • 1990
  • The zoospores of Polymyxa graminis known as vector of barley yellow mosaic virus(BYMV) were found from the rootlets of diseased barley plants. The X-bodies in the lower epidermis of diseased leaf tissues were reddish under fluorescence microscopy. The shape of virus particles was flexuous rod and 300-1,000 nm in length. The pinwheel structures, cylindrical inclusion bodies, ring-form inclusion bodies, and crystalline lattice-like structure were found together with virus particles in the cytoplasm of diseased leaf tissues. Generally, intracellular organelles in the diseased barley leaf tissues infected with BYMV were either not well-developed or degenerated.

  • PDF

내부공생 켈프 배우체의 숙주 선택 (Host Specificity of Endophytic Kelp Gametophytes)

  • 김광용;최태섭;이영호
    • ALGAE
    • /
    • 제19권1호
    • /
    • pp.31-37
    • /
    • 2004
  • Farmed kelp gametophytes were previously observed to be living endophytically in filamentous red algae. The interactions of two farmed kelp species and six red algae were examined in laboratory culture. Undaria pinnatifida (Harvey) Suringar and Laminaria religiosa Miyabe demonstrated the differing abilities of zoospores to become endophytic in four host red algae and neither kelp became endophytic in two non-filamentous red algae. There was a strong seasonal component regarding infectiousness that is associated with the changes in fron erosion in U. pinnatifida from April to June. At the same time, L. religiosa showed no significant changes in frond erosion, and there were no apparent changes in infection levels in the two species they were able infect. This study indicated clear differences between two keip species with regard to their symbiotic relationship to red algae in terms of host specificity and preference of kelp gametophytes.