DOI QR코드

DOI QR Code

Quantitative detection of Pythium porphyrae and Pythium chondricola (Oomycota), the causative agents of red rot disease in Pyropia farms in China

  • Jie Liu (Tianjin Key Lab of Aqua-Ecology and Aquaculture, Department of Fishery Science, Tianjin Agricultural University) ;
  • Sudong Xia (Tianjin Key Lab of Aqua-Ecology and Aquaculture, Department of Fishery Science, Tianjin Agricultural University) ;
  • Huichao Yang (State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Zhaolan Mo (State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Jie Li (State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Yongwei Yan (State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
  • Received : 2024.05.27
  • Accepted : 2024.08.26
  • Published : 2024.09.23

Abstract

Red rot disease is one of the notorious algal diseases that threaten the cultivation of Pyropia in China, and two Pythium pathogens, i.e., Pythium porphyrae and P. chondricola, have been reported as causative agents. To monitor the pathogens, a fluorescent quantitative polymerase chain reaction (PCR) method was developed to quantitatively detect their abundance. Using overlapping PCR and pathogen-specific primer pairs, two pathogen-specific fragments were concatenated to construct an internal standard plasmid, which was used for quantification. For zoospores of known numbers, the results showed that this method can detect as less as 100 and 10 zoospores mL-1 in a 200 mL solution for P. porphyrae and P. chondricola, respectively. Using monthly collected seawater at 10 sites in Haizhou Bay, a typical aquaculture farm in China, a significantly higher temperature and a significantly lower salinity were determined in December 2021. P. porphyrae was determined to be more abundant than P. chondricola, though with similar temporal distribution patterns from December 2021 to February 2022. When a red rot disease occurred in December 2021, the two pathogens were significantly more abundant at two infected sub-sites than the uninfected sub-site within both seawater and sediment, though they were all significantly more enriched in sediment than in seawater. The present method provides the capability to quantify and compare the abundance of two pathogens and also has the potential to forecast the occurrence of red rot disease, which is of much significance in managing and controlling the disease.

Keywords

Acknowledgement

This work was funded by National Key Research and Development Program of China (2023YFD2400704), China Agriculture Research System of Ministry of Agriculture and Rural Affairs (CARS-50), and Key Scientific Research Project Universities and Colleges in Tianjin (2022ZD004).

References

  1. Addepalli, M. K. & Fujita, Y. 2002. Regulatory role of external calcium on Pythium porphyrae (Oomycota) zoospore release, development and infection in causing red rot disease of Porphyra yezoensis (Rhodophyta). FEMS Microbiol. Lett. 211:253-257. doi.org/10.1111/j.1574-6968.2002.tb11233.x
  2. Amano, H., Sakaguchi, K., Maegawa, M. & Noda, H. 1996. The use of a monoclonal antibody for the detection of fungal parasite, Pythium sp., the causative organism of red rot disease, in seawater from Porphyra cultivation farms. Fish. Sci. 62:556-560. doi.org/10.2331/fishsci.62.556
  3. Amano, H., Suginaga, R., Arashima, K. & Noda, H. 1995. Immunological detection of the fungal parasite, Pythium sp.: the causative organism of red rot disease in Porphyra yezoensis. J. Appl. Phycol. 7:53-58. doi.org/10.1007/BF00003550
  4. Behera, D. P., Ingle, K. N., Mathew, D. E., et al. 2022. Epiphytism, diseases and grazing in seaweed aquaculture: a comprehensive review. Rev. Aquac. 14:1345-1370. doi.org/10.1111/raq.12653
  5. Debode, F., Marien, A., Janssen, E., Bragard, C. & Berben, G. 2017. The influence of amplicon length on real-time PCR results. Biotechnol. Agron. Soc. Environ. 21:3-11. doi.org/10.25518/1780-4507.13461
  6. Diehl, N., Kim, G. H. & Zuccarello, G. C. 2017. A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota). Algae 32:29-39. doi.org/10.4490/algae.2017.32.2.25
  7. Ding, H. & Ma, J. 2005. Simultaneous infection by red rot and chytrid diseases in Porphyra yezoensis Ueda. J. Appl. Phycol. 17:51-56. doi.org/10.1007/s10811-005-5523-6
  8. FAO. 2024. Available from: https://www.fao.org/fishery/statistics-query/en/aquaculture/aquaculture_value.Accessed May 17, 2024.
  9. Fujita, Y. & Zenitani, B. 1977. Studies on pathogenic Pythium of laver red rot in Ariake sea farm: IV. Serological differentiation of pathogenic Pythium strain. Nippon Suisan Gakkaishi 43:1313-1318 (in Japanese). doi.org/10.2331/suisan.43.1313
  10. Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640. doi.org/10.1016/j.tplants.2010.08.005
  11. Heckman, K. L. & Pease, L. R. 2007. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2:924-932. doi.org/10.1038/nprot.2007.132
  12. Im, S. H., Klochkova, T. A., Lee, D. J., Gachon, C. M. M. & Kim, G. H. 2019. Genetic toolkits of the red alga Pyropia tenera against the three most common diseases in Pyropia farms. J. Phycol. 55:801-815. doi.org/10.1111/jpy.12857
  13. Kawamura, Y., Yokoo, K., Tojo, M. & Hishiike, M. 2005. Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyrae spp., in the Ariake Sea, Japan. Plant Dis. 89:1041-1047. doi.org/10.1094/pd-89-1041
  14. Kazama, F. Y. 1979. Pythium 'red rot disease' of Porphyra. Experientia 35:443-444. doi.org/10.1007/BF01922695
  15. Kim, G. H., Moon, K.-H., Kim, J.-Y., Shim, J. & Klochkova, T. A. 2014. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249-265. doi.org/10.4490/algae.2014.29.4.249
  16. Klochkova, T. A., Jung, S. & Kim, G. H. 2017. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J. Appl. Phycol. 29:371-379. doi.org/10.1007/s10811-016-0947-8
  17. Lai, P. Y. 2009. Investigation and countermeasure of rot disease of Porphyra haitanensis in Fuding City in autumn 2008. Mod. Fish. Inf. 24:6-9 (in Chinese).
  18. Lee, S. J., Hwang, M. S., Park, M. A., et al. 2015. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae 30:217-222. doi.org/10.4490/algae.2015.30.3.217
  19. Lee, S. J. & Lee, S.-R. 2022. Rapid detection of red rot disease pathogens (Pythium chondricola and P. porphyrae) in Pyropia yezoensis (Rhodophyta) with PCR-RFLP. Plant Dis. 106:30-33. doi.org/10.1094/PDIS-07-21-1494-SC
  20. Levesque, C. A. & De Cock, A. W. A. M. 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108:1363-1383. doi.org/10.1017/S0953756204001431
  21. Mo, Z., Li, S., Kong, F., Tang, X. & Mao, Y. 2016. Characterization of a novel fungal disease that infects the gametophyte of Pyropia yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 28:395-404. doi.org/10.1007/s10811-015-0539-z
  22. Nguyen, H. D. T., Dodge, A., Dadej, K., et al. 2022. Whole genome sequencing and phylogenomic analysis show support for the splitting of genus Pythium. Mycologia 114:501-515. doi.org/10.1080/00275514.2022.2045116
  23. Park, C. S., Kakinuma, M. & Amano, H. 2001. Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. Fish. Sci. 67:197-199. doi.org/10.1046/j.1444-2906.2001.00224.x
  24. Park, C. S., Kakinuma, M. & Amano, H. 2006. Forecasting infections of the red rot disease on Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. J. Appl. Phycol. 18:295-299. doi.org/10.1007/s10811-006-9031-0
  25. Pionzio, A. M. & McCord, B. R. 2014. The effect of internal control sequence and length on the response to PCR inhibition in real-time PCR quantitation. Forensic Sci. Int. Genet. 9:55-60. doi.org/10.1016/j.fsigen.2013.10.010
  26. Qiu, L., Mao, Y., Tang, L., Tang, X. & Mo, Z. 2019. Characterization of Pythium chondricola associated with red rot disease of Pyropia yezoensis (Ueda) (Bangiales, Rhodophyta) from Lianyungang, China. J. Oceanol. Limnol. 37:1102-1112. doi.org/10.1007/s00343-019-8075-3
  27. Satoshi, F. 2016. Development of a quantitative detection technique for the pathogen zoospores of red rot disease. Bull. Fukuoka Fish. Mar. Technol. Res. Cent. 26:93-96 (in Japanese).
  28. Takahashi, M., Ichitani, T. & Sasaki, M. 1977. Pythium porphyrae Takahashi et Sasaki, sp. nov. causing red rot of marine red algae Porphyra spp. Trans. Mycol. Soc. Jpn. 18:279-285 (in Japanese).
  29. Tang, L., Qiu, L., Liu, C., et al. 2019. Transcriptomic insights into innate immunity responding to red rot disease in red alga Pyropia yezoensis. Int. J. Mol. Sci. 20:5970. doi.org/10.3390/ijms20235970
  30. Vandesompele, J., De Preter, K., Pattyn, F., et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034.1. doi.org/10.1186/gb-2002-3-7-research0034
  31. Ward, G. M., Faisan, J. P. Jr., Cottier-Cook, E. J., et al. 2019. A review of reported seaweed diseases and pests in aquaculture in Asia. J. World Aquacult. Soc. 51:815-828. doi.org/10.1111/jwas.12649
  32. Wen, X., Zuccarello, G. C., Klochkova, T. A. & Kim, G. H. 2023. Oomycete pathogens, red algal defense mechanisms and control measures. Algae 38:203-215. doi.org/10.4490/algae.2023.38.12.13
  33. Weng, P., Yang, H., Mo, Z., et al. 2024. Application and evaluation of probiotics against red rot disease in Pyropia. Aquaculture 578:740050. doi.org/10.1016/j.aquaculture.2023.740050
  34. Yan, Y.-W., Yang, H.-C., Tang, L., Li, J., Mao, Y.-X. & Mo, Z.-L. 2019. Compositional shifts of bacterial communities associated with Pyropia yezoensis and surrounding seawater co-occurring with red rot disease. Front. Microbiol. 10:1666. doi.org/10.3389/fmicb.2019.01666
  35. Yang, L.-E., Deng, Y.-Y., Xu, G.-P., Russell, S., Lu Q.-Q. & Brodie, J. 2020. Redefining Pyropia (Bangiales, Rhodophyta): four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. J. Phycol. 56:862-879. doi.org/10.1111/jpy.12992