DOI QR코드

DOI QR Code

Disinfection of Phytophthora spp. in Recycling Nursery Irrigation Water by Ozone Treatment

오존처리에 의한 폐양액내 Phytophthora spp. 멸균

  • Lee, Jung-Sup (Horticultural Environment Div., National Horticultural Research Institute, RDA) ;
  • Han, Kyoung-Suk (Horticultural Environment Div., National Horticultural Research Institute, RDA) ;
  • Park, Jong-Han (Horticultural Environment Div., National Horticultural Research Institute, RDA) ;
  • Cheong, Seung-Ryong (Horticultural Environment Div., National Horticultural Research Institute, RDA) ;
  • Jang, Han-Ik (Fruit Research Div., National Horticultural Research Institute, RDA)
  • Published : 2006.12.01

Abstract

Recycled irrigation water is a primary inoculum source of Phytophthora spp. and is capable of spreading propagules throughout nursery cultivation. Ozonation is commonly used to disinfest the recycled irrigation water; however, ozone has not been fully researched as a disinfectant for this purpose. In this study, zoospores of four species of Phytophthora were exposed for $1{\sim}9$ min to free available ozone at $0.1{\sim}0.3,\;0.5{\sim}0.7,\;0.9{\sim}1.2,\;1.4{\sim}1.7\;and\;1.9{\sim}2.2mg/l$. Zoospores, mycelial fragments, and culture plugs of P. nicotianae also were exposed to ozone concentrations ranging from 0.1 to 2.2 mg/l for periods ranging from 1 to 9 min. In addition, ozonated water was assayed monthly in 2004 and 2005 at two commercial nurseries, and quarterly in the first year at two other nurseries in Suwon, for ozone and survival of pythiaceous species using a selective medium. No zoospores of any species tested survived endpoint free ozone at 1.4 mg/l while limited mycelial fragments of P. nicotianae survived at 1.9 mg/l, and mycelial plugs treated at the same level of ozone were able to produce few sporangia. Phytophthora spp. were recovered only from nursery irrigation water with levels of free ozone at 0.3 mg/l or lower. The results of this study are essential for improving current ozonation sterilization.

수경재배지 폐양액 내 Phytophthora spp.는 일차적인 전염원이며 배양액 재사용 시 전염이 더욱 확산될 수 있다. 오존은 농업용수 및 지하수 살균을 위해 산업적으로 이용하여 왔으나 수경 재배지에서 폐양액 살균 후 재활용 목적으로 충분한 연구는 수행되지 못하였다. 본 연구에서는 폐양액 내 존재하는 4종의 Phytophthora spp.에 대하여 살균 목적으로 오존 처리 시간을 $1{\sim}9$분까지 구분하여 처리하였다. 폐양액 내 오존 7분 이상(농도 1.4 mg/l) 처리에서는 처리 시간에 관계없이 시험균주 4종 모두에서 매우 높은 살균력을 나타낸 반면 5분(농도 1.2mg/l) 이하의 저농도 처리는 충분한 살균력을 나타내지 못하였다. 한편, 7분 이상 고농도($1.4{\sim}1.7mg/l$)로 살균 처리된 폐양액을 P. nicotianae가 생장중인 배양접시에 처리한 결과 일부 배지 속 깊게 생장중인 균사체까지 살균력이 미치지 못하였다. 따라서, 본 연구 결과 완전한 폐양액 살균을 위해서는 오존 살균과 더불어 균사체 덩어리 또는 이병 잔재물을 제거할 수 있는 필터 방식과의 병행이 바람직하다.

Keywords

References

  1. Buck, J. W., van Iersel, M., Oetting, R. and Hung, Y. D. 2002. In vitro fungicidalactivity of acidic electrolyzed oxidizing water. Plant Dis. 86: 278-281 https://doi.org/10.1094/PDIS.2002.86.3.278
  2. Gentile, A. G., Feder, W. A., Young, R. E. and Santer, Z. 1971. Susceptibility of Lycopersicon spp. to ozone injury. J. Amer. Soc. Hort. Sci. 96: 94-96
  3. Grech, N. M. and Rijkenberg, F. H. 1992. Injection of electrolytically generated chlorine into citrus microirrigation systems for the control of certain waterborne root pathogens. Plan Dis. 76: 457-461 https://doi.org/10.1094/PD-76-0457
  4. Henderson, W. R. and Reinert, R. A. 1979. Yield response of four fresh market tomato cultivars after acute ozone exposure in seedling stage. J. Amer. Soc. Hort. Sci. 104: 754-759
  5. Hong, C. X., Kong, P. and Richardson, P. A. 2002a. Epidemiological significance of Phytophthora species present in recycled irrigation water to ornamental production (Abstr.) Phytopathology 92: S143
  6. Hong, C. X., Richardson, P. A. and Kong, P. 2002b. Comparison of membrane filters as a tool for isolating Pythiaceous species in irrigation water. Phytopathology 92: 610-616 https://doi.org/10.1094/PHYTO.2002.92.6.610
  7. Kwon, O. J., Park, S. Y., Kim, K. H., Lee, H. J. and Byun, M. W. 1996. Sterilization effects of r-ray and ozone on microorganism contaminated in Angelica keiskei powder. J. Fd. Safety. 11: 221-225
  8. Lim, Y. S., Lee, H. J., Lee, D. J., Heo, J. S., Sohn, B. K. and Cho, J. S. 2002. Effect of ozone treatment for Nakdong river raw water-II. J. Environ. Sci. 11: 1267-1274 https://doi.org/10.5322/JES.2002.11.12.1267
  9. Park, K. W., Lee, G. P., Kim, M. S., Lee, S. J. and Seo, M. W. 1998. Control of several fungi in the recirculating hydroponic system by modified slow sand filtration. Kor. J. Hort. Sci & Tech. 16: 347-349
  10. Runia, W. T., Michielsen, J. M. G. P., van Kuik, A, J. and van Os, E. A. 1996. Elimination of root-infecting pathogens on recirculation water by slow sand filtration. ISOSC Proc. 395- 407
  11. Skimina, C. A. 1992. Recycling water, nutrients. and waste in the nursery industry. HortScience 27: 968-971
  12. Smith, P. M. 1976. Control of Phytophthora cinnamomi in water by chlorination. p. 112. In: Glasshouse Crops Res. Inst. Annu. Rep. Little-Hampton, England
  13. Stanghellini, M. E., Kim, D. H., Rasmussen, S. L. and Rorabaugh, P. A. 1996a. Control of root rot of peppers caused by Phytophthora capsici with a nonionic surfactant. Plant Dis. 80: 1113-1116 https://doi.org/10.1094/PD-80-1113
  14. Stanghellini, M. E., Rasmussen, S. L., Kim, D. H. and Rorabaugh, P. A. 1996b. Efficacy of nonionic surfactants in the control of zoospore spread of Pythium aphanidermatum in a recirculating hydroponic system. Plant Dis. 80: 422-428 https://doi.org/10.1094/PD-80-0422
  15. Temple, P. J. 1990. Growth and yield responses of processing tomato (Lycopersicon esculentum Mill.) cultivars to ozone. Env. Expt. Bot. 30: 969-974
  16. Thompson, D. L. 1985. Control of bacterial stalk rot of corn by chlorination of water in sprinkler irrigation. Crop Sci. 5: 369- 370 https://doi.org/10.2135/cropsci1965.0011183X000500040027x
  17. Von broembsen, S. L. and Deacon, J. W. 1997. Calcium interference with zoospore biology and infectivity of Phytophthora parasitica in nutrient irrigation solutions. Phytopathology 87: 522-527 https://doi.org/10.1094/PHYTO.1997.87.5.522
  18. Wohanka, W. 1992. Slow filtration and UV radiation: Low-cost techniques for disinfection of recirculating nutrient solution or surface water. Proc. 8th Int. Congr. Soilless Culture 497-511

Cited by

  1. Application of Inactivation Model on Phytophthora Blight Pathogen (Phytophthora capsici) using Plasma Process vol.24, pp.11, 2015, https://doi.org/10.5322/JESI.2015.24.11.1393
  2. A Study on the Inactivation of Phytophthora Blight Pathogen (Phytophthora capsici) using Plasma Process vol.23, pp.9, 2014, https://doi.org/10.5322/JESI.2014.23.9.1601