• Title/Summary/Keyword: zone of inhibition

Search Result 421, Processing Time 0.028 seconds

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF

Isolation and Biocontrol Potential of Bacillus amyloliquefaciens Y1 against Fungal Plant Pathogens

  • Jamal, Qaiser;Lee, Yong Seong;Jeon, Hyeon Deok;Park, Yun Suk;Kim, Kil Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.485-491
    • /
    • 2015
  • This study was performed to investigate thermophilic bacteria from soil having broad antifungal spectrum against Rhizoctonia solani, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f.sp. lycopersici, and Botrytis cinerea. One isolate selected could resist heat shock of $60^{\circ}C$ for one hour, and had broad antifungal activity in dual culture assay against all tested fungal pathogens and was identified as Bacillus amyloliquefaciens Y1 using 16S rRNA gene sequence. Further investigation for antifungal activity of bacterial culture filtrate (BCF) and butanol crude extract (BCE) of various concentrations showed broad spectrum antifungal activity and fungal growth inhibition significantly increased with increasing concentration with highest growth inhibition of 100% against R. solani with 50% BCF and 11 mm of zone of inhibition against R. solani with 4 mg BCE concentration. Treatment of butanol crude extract resulted in deformation, lysis or degradation of C. gloeosporioides and P. capsici hyphae. Furthermore, B. amyloliquefaciens Y1 produced volatile compounds inhibiting growth of R. solani (70%), C. gloeosporioides (65%) and P. capsici (65-70%) when tested in volatile assay. The results from the study suggest that B. amyloliquefaciens Y1 could be a biocontrol candidate to control fungal diseases in crops.

In vitro evaluation of octenidine as an antimicrobial agent against Staphylococcus epidermidis in disinfecting the root canal system

  • Chum, Jia Da;Lim, Darryl Jun Zhi;Sheriff, Sultan Omer;Pulikkotil, Shaju Jacob;Suresh, Anand;Davamani, Fabian
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.8.1-8.7
    • /
    • 2019
  • Objectives: Irrigants are imperative in endodontic therapy for the elimination of pathogens from the infected root canal. The present study compared the antimicrobial efficacy of octenidine dihydrochloride (OCT) with chlorhexidine (CHX) and sodium hypochlorite (NaOCl) against Staphylococcus epidermidis (S. epidermidis) for root canal disinfection. Materials and Methods: The minimum inhibitory concentration (MIC) was obtained using serial dilution method. The agar diffusion method was then used to determine the zones of inhibition for each irrigant. Lastly, forty 6-mm dentin blocks were prepared from human mandibular premolars and inoculated with S. epidermidis. Samples were randomly divided into 4 groups of 10 blocks and irrigated for 3 minutes with saline (control), 2% CHX, 3% NaOCl, or 0.1% OCT. Dentin samples were then collected immediately for microbial analysis, including an analysis of colony-forming units (CFUs). Results: The MICs of each tested irrigant were 0.05% for CHX, 0.25% for NaOCl, and 0.0125% for OCT. All tested irrigants showed concentration-dependent increase in zones of inhibition, and 3% NaOCl showed the largest zone of inhibition amongst all tested irrigants (p < 0.05). There were no significant differences among the CFU measurements of 2% CHX, 3% NaOCl, and 0.1% OCT showing complete elimination of S. epidermidis in all samples. Conclusions: This study showed that OCT was comparable to or even more effective than CHX and NaOCl, demonstrating antimicrobial activity at low concentrations against S. epidermidis.

Inhibition of Cronobacter sakazakii by Lactobacillus acidophilus n.v. Er2 317/402

  • Charchoghlyan, Haykuhi;Kwon, Heejun;Hwang, Dong-Ju;Lee, Jong Suk;Lee, Junsoo;Kim, Myunghee
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.635-640
    • /
    • 2016
  • Lactobacillus acidophilus n.v. Er2 317/402 strain Narine is known as a health beneficial functional probiotic culture and supplementary source of nutrition for newborns. In this study, in vitro antimicrobial activities of Narine-lyophilized (Narine-L), Narine-heat treated (Narine-HT), and Narine crude cell-free extract (Narine-CCFE) were evaluated against pathogen Cronobacter sakazakii (C. sakazakii) in agar as well as in a reconstituted powdered infant formula (RPIF) model. Inhibition zones of 30 mg Narine-L and Narine-HT were both 150 U, whereas inhibition zone of 30 mg Narine-CCFE was 200 U. Narine-L (1 g) and Narine-HT (1 g) were added to 10 mL of artificially contaminated RPIF, respectively, containing 100 μL of C. sakazakii (1.62×108 colony forming unit (CFU)/mL). After treatment with Narine-L and Narine-HT for 3 h and 6 h at 37℃, less than ≤107 CFU/mL of C. sakazakii was detected in RPIF. Without Narine-L and Narine-HT treatment, the population of C. sakazakii increased up to 5.36×109 CFU/mL after 6 h. Examination by transmission electron microscopy confirmed C. sakazakii cells were damaged by Narine-CCFE. Thus, employing Narine culture as a natural and safe bio-preservative may protect infants from C. sakazakii.

Growth Inhibition of Food-borne Bacteria by Juice and Extract of Ginger and Garlic (생강과 마늘 즙 및 추출물의 식중독 세균에 대한 증식저해작용)

  • 김미림;최경호;박찬성
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.2
    • /
    • pp.160-169
    • /
    • 2000
  • This study was conducted to understand the inhibitory garlic and ginger against the growth of food born pathogenic bacteria. Juice was prepared from the raw spices by using an electric homogenizer and membrane filter. Dry-powdered spices were treated with double distilled water and 70% ethanol to extract the antibacterial substances, respectively. Growth inhibitory effects of juice and extracts of the spices were monitored by using bacterial strains such as B. subtilis, L. moncytogenes, S. aureus,E. coli O157 : H7, P. aeruginosa, and S. typhimurium. On a solid medium where E. coli and S. aureus cells were grown, ginger juice formed inhibitory zone at the concentrations of 2-10% by paper disc test. The Bone formed by ginger juice was wider and more transparent than that formed by garlic juice on the same concentration.1. monocytogenes and B. subtilis were more sensitive to garlic juice than others, and stopped growing at 2% garlic juice. Ginger juice showed the growth inhibition by 30-50% at 1.0% concentration. On the contrast, P. aeruginosa which resisted to the garlic juice was the most sensitive to ginger juice. Water extract of garlic was not effective to inhibit the bacterial growth, while 2% ginger extract completely inhibited the growth of E. coli and S. aureus. Alcohol extract of ginger inhibited the growth of bacteria at the concentration of 0.3%. This growth inhibition is almost 10 times lower than that of the garlic extract. It was clear that ginger had more potential than garlic as an inhibitor to control the growth of the indicator organisms.

  • PDF

Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid (Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해)

  • Yum, Su-Jin;Kim, Seung Min;Yu, Yeon-Cheol;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.

Rhapontigenin Production by Bioconversion and Inhibition of Melanin Synthesis (생물전환에 의한 Rhapontigenin의 생산 및 멜라닌 합성저해)

  • Jeon, Min;Lee, Kang-Moon;Lim, Young-Hee;Kim, Jeong-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • Rhapontin is the glycosylated stilbene compound, and comprising major component of rhubarb root extract. Rhapontin has been used as a raw material of skin-whitening cosmetics in Korea. Rhapontigenin, the aglycone of rhapontin, has been suggested to be more active than its glycosylated form. Therefore, the rhubarb root extract was treated with commercial enzyme, Pectinex to remove glycosylated moiety of rhapontin and rhapontigenin was prepared. The resulting material was analysed and identified as rhapontigenin by proton NMR and MALDI-Mass. Rhapontigenin exhibited tyrosinase inhibitory activity with an $IC_{50}$ of $126.72{\mu}g/mL$. The tyrosinase inhibitory activity of rhapontigenin was six times higher than that of rhapontin. In melanin biosynthesis inhibition assay using Streptomyces bikiniensis, rhapontigenin showed wider inhibition zone than that of rhapontin. From these results, we expect that rhapontigenin has stronger skin whitening effect than rhapontin and has advantages in cosmetic industry.

Effect of Extract of Fermented Dropwort on Intestinal Bacteria and Enzymes In Vitro (미나리발효액이 장내 유해세균 및 유익균의 In Vitro 생육 및 효소활성에 미치는 영향)

  • Lee, Kyung-Ae;Kim, Moo-Sung;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.358-361
    • /
    • 2008
  • Effect of extract of fermented dropwort (Oenanthe stolonifera) on growth of intestinal harmful/useful bacteria and enzyme activity were investigated in vitro. The extract showed strong inhibition on harmful microbes including Vibrio and Salmonella, but mild inhibition on Bifidobacterium longum in both agar plate and liquid cultivation. Minimum inhibitory concentration (MIC) value of B. longum was the highest among tested microbes. Inhibition effect of fermented extract on harmful microbes increased according to fermentation period. Extract of fermented dropwort showed inhibitory effects on activity of microbial ${\beta}$-glucuronidase and tryptophanase. The inhibitory effects were also proportional to fermentation period. As consequence, it is assumed that the uptake of fermented dropwort might be useful for human intestinal health.

The Effect of $_L$=lysine on Growth Inhibition of Microcystis sp. ($_L$ =lysine에 의한 Microcystis sp.의 선택적 성장억제)

  • 송석환;신규철;한명수;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.216-221
    • /
    • 2003
  • Various physico-chemical and biological methods have been used to remove. cyanobacteria which causes blooms and releases toxin. The purpose of the following experiment is aimed finding out which cyanobacteria are affected by $_L-lysine $ and what concentration of$_L-lysine $ inhibits cyanobacteria. The 20 samples of Microcystis sp. have been tested. To prove the growth inhibition on Microcystis sp., double-layered agar method and microplate method have been used. When the concentration of $_L-lysine $ is as heavy as 100 ${\mu}g\; ml^{-1}$~300 ${\mu}g\; ml^{-1}$, some Microcystis sp. have made halo zone. Some Microcystis sp. have shown so high activity as to be inhibited in their growth by the $_{L}$-lysine of concentration 10 ${\mu}g\; ml^{-1}$ with microplate method. These activities are various in accordance with every species. In additions, the microplate method has been proven to be an easy way which examine the lytic activity on the species of algae.e.

Inhibition of Neurogenesis of Subventricular Zone Neural Stem Cells by 5-ethynyl-2'-deoxyuridine (EdU) (5-ethynyl-2'-deoxyuridine (EdU)에 의한 뇌실하 영역 신경줄기세포의 신경 세포로의 분화 억제)

  • Park, Ki-Youb;Oh, Hyun-Chang;Lee, Ji-Yong;Kim, Man Su
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.623-631
    • /
    • 2017
  • In the subventricular zone (SVZ) and the subgranular zone of the brain, neurogenesis occurs throughout one's lifespan. Neural stem cells (NSCs) in these regions divide to maintain their stem cell pools as well as differentiate into neurons and glial cells. To monitor cell division, a thymidine analogue such as 5-ethynyl-2'-deoxyuridine (EdU) has been used. In some cases, EdU was applied to label newly born neurons. Here, we report about the effects of EdU on the proliferation and differentiation of NSCs cultured from mouse SVZ. First, when NSCs were cultured in a proliferation medium containing EdU for 24 hr, they did not generate any neurons under the following differentiation conditions. When EdU was applied to the proliferating NSCs for 1 hr prior to differentiation, neurogenesis was still substantially reduced. Second, EdU decreased cell proliferation of NSCs in dose- and time-dependent manners. Finally, EdU inhibited differentiation into oligodendrocyte lineage, while the number of glial fibrillary acidic protein (GFAP)-positive astrocytes increased. To our knowledge, these findings are the first to show the effects of EdU on the differentiation of SVZ NSCs and suggest that cell division is necessary for differentiation into neurons and oligodendrocytes.