DOI QR코드

DOI QR Code

Isolation and Biocontrol Potential of Bacillus amyloliquefaciens Y1 against Fungal Plant Pathogens

  • Jamal, Qaiser (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University) ;
  • Lee, Yong Seong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University) ;
  • Jeon, Hyeon Deok (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University) ;
  • Park, Yun Suk (Purne Co., Ltd., Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Kil Yong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University)
  • Received : 2015.09.16
  • Accepted : 2015.10.13
  • Published : 2015.10.31

Abstract

This study was performed to investigate thermophilic bacteria from soil having broad antifungal spectrum against Rhizoctonia solani, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f.sp. lycopersici, and Botrytis cinerea. One isolate selected could resist heat shock of $60^{\circ}C$ for one hour, and had broad antifungal activity in dual culture assay against all tested fungal pathogens and was identified as Bacillus amyloliquefaciens Y1 using 16S rRNA gene sequence. Further investigation for antifungal activity of bacterial culture filtrate (BCF) and butanol crude extract (BCE) of various concentrations showed broad spectrum antifungal activity and fungal growth inhibition significantly increased with increasing concentration with highest growth inhibition of 100% against R. solani with 50% BCF and 11 mm of zone of inhibition against R. solani with 4 mg BCE concentration. Treatment of butanol crude extract resulted in deformation, lysis or degradation of C. gloeosporioides and P. capsici hyphae. Furthermore, B. amyloliquefaciens Y1 produced volatile compounds inhibiting growth of R. solani (70%), C. gloeosporioides (65%) and P. capsici (65-70%) when tested in volatile assay. The results from the study suggest that B. amyloliquefaciens Y1 could be a biocontrol candidate to control fungal diseases in crops.

Keywords

References

  1. Agrios, N.A. 1988. Plant Pathology. 3rdEdn., Academic press, USA. pp.220-222.
  2. Baker, K. F., and R. J. Cook. 1982. Biological control of plant pathogens. The American Phytopathological Society, Saint Paul, Minnesota. 433.
  3. Baker, K.F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85. https://doi.org/10.1146/annurev.py.25.090187.000435
  4. Sarosh, B.R., and J.J. Danielsson, Meijer Transcript profiling of oil seed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea Plant Mol. Biol., 70 (2009), pp.31-45. https://doi.org/10.1007/s11103-009-9455-4
  5. Chen, X., H. Koumoutsi, A. Scholz, and R. Borriss. 2009 More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol. 16:14-24. https://doi.org/10.1159/000142891
  6. Cho, S., J. Lee, S.K. Cha, B.J. Kim, and K.S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiology Letters. 223:47-51. https://doi.org/10.1016/S0378-1097(03)00329-X
  7. Choudhary, D.K., and B.N. Johri. 2009. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR).Microbiol. Res. 164:493-513. https://doi.org/10.1016/j.micres.2008.08.007
  8. Cook, R.K. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
  9. Ehtesmul-Haque, S., and A. Ghaffar. 1993. Use of rhizobia in the control of root rots diseases of subflower, okra, soyabean and mungbean. J. Phytoathology. 138:157-163. https://doi.org/10.1111/j.1439-0434.1993.tb01372.x
  10. Esterio, M., J. Auger, C. Ramos, A.S. Walker, G. Munoz, and S. Fillinger, 2009. Botrytis en uva de mesa de exportacion: Situacion actual de sensibilidad a fungicidas en Chile. Rev. Aconex, 103:16-23
  11. Ezra, D., W. M. Hess, and G.A. Strobel. 2004. New endophytic isolates of Muscodoralbus, a volatile-antibiotic-producing fungus.Microbiol. 150:4023-4031. https://doi.org/10.1099/mic.0.27334-0
  12. Fernando, W.G.D., R. Ramarathnam, A.S. Krishnamoorthy, and S.C. Savchuk. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil BiolBiochem 37:955-964 https://doi.org/10.1016/j.soilbio.2004.10.021
  13. Danielsson, J., O. Reva, and J. Meijer. 2007. Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant associated Bacillus amyloliquefaciens Microb. Ecol., 54:134-140 https://doi.org/10.1007/s00248-006-9181-2
  14. Kai, M., U. Effmert, G. Berg, and B. Piechulla. 2006. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol 157:351-360
  15. Korenblum, E., I. von der Wied, A.L.S. Santos, A.S. Roasdo, G.V. Sebastian, C.M.L.M. Coutinho, F.C.M. Magalhaes, M.M. De Paiva, and L. Seldin. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B.firmis H20-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. App. Microbiol. 98:667-675. https://doi.org/10.1111/j.1365-2672.2004.02518.x
  16. Lee, J.Y., H.W. Jung, and B.K. Hwang. 2005. Streptomyces koyangensis sp. nov., a novel actinomycete that produces 4-phenyl-3-butenoic acid. International J. Syst. Evol. Microbiol. 55:257-262. https://doi.org/10.1099/ijs.0.63168-0
  17. Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim , K.H. Park, G.S. Chan, R.D. Park, and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53:358-364. https://doi.org/10.1007/s00284-005-0333-2
  18. McSpadden, B.B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol. 94:1252-1258. https://doi.org/10.1094/PHYTO.2004.94.11.1252
  19. Michielse, C.B, and M. Rep. 2009.Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10:311-324 https://doi.org/10.1111/j.1364-3703.2009.00538.x
  20. Naing, K.W., M. Aness, S.J. Kim., Y. Nam, Y.C. Kim, and K.Y. Kim. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64:55-63. https://doi.org/10.1007/s13213-013-0632-y
  21. Niazi, A., S. Manzoor, S. Asari, J. Bejai, J. Meijer, and E. Bongcam-Rudloff. 2014. Genome analysis of Bacillus amyloliquefaciens subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One 9 (8), e104651. https://doi.org/10.1371/journal.pone.0104651
  22. Prusky, D. 1996. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 34, 413-434. https://doi.org/10.1146/annurev.phyto.34.1.413
  23. Raza W., X. Yang, H. Wu, Y. Wang, Y. Xu, and Q. Shen. 2009. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur. J Plant Pathol 125:471-483 https://doi.org/10.1007/s10658-009-9496-1
  24. Rini, C.R., and K.K, Sulchana. 2007. Usefulness of Trichoderma spp. and florescent Pseudomonas (Pseudomonas fluorescence) against Rhizoctonia solani and Fusarium oxysporum infecting tomato. J. Trop. Agric. 44:79-82
  25. Sang, M.K., S.C. Chun, and K.D. Kim. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control. 46:424-433. https://doi.org/10.1016/j.biocontrol.2008.03.017
  26. Scholefield, P., and J. Morison. 2010. Assessment of Economic Cost of Endemic Pests and Diseases on the Australian Grape and Wine Industry. Adelaide, Australia: Grape and Wine Research and Development Corporation.
  27. Souto, G.I., O.S. Correa, M.S. Montechhia, N.L. Kerber, N.L. Pucheu, M. Bachur, and A.F. Garcia. 2004. Genetic and functional characterization of a Bacillus sp. Strain execrating surfactin and antifungal metabolite partially identified as iturin -like compounds. J. App. Microbiol. 97:1247-1256. https://doi.org/10.1111/j.1365-2672.2004.02408.x

Cited by

  1. Purification and antifungal characterization of Cyclo ( D -Pro- L - Val) from Bacillus amyloliquefaciens Y1 against Fusarium graminearum to control head blight in wheat vol.10, 2017, https://doi.org/10.1016/j.bcab.2017.01.003
  2. Identification for the First Time of Cyclo(d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111839
  3. The Effect of Bacillus licheniformis MH48 on Control of Foliar Fungal Diseases and Growth Promotion of Camellia oleifera Seedlings in the Coastal Reclaimed Land of Korea vol.8, pp.1, 2019, https://doi.org/10.3390/pathogens8010006