Browse > Article
http://dx.doi.org/10.7745/KJSSF.2015.48.5.485

Isolation and Biocontrol Potential of Bacillus amyloliquefaciens Y1 against Fungal Plant Pathogens  

Jamal, Qaiser (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University)
Lee, Yong Seong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University)
Jeon, Hyeon Deok (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University)
Park, Yun Suk (Purne Co., Ltd., Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Kil Yong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.48, no.5, 2015 , pp. 485-491 More about this Journal
Abstract
This study was performed to investigate thermophilic bacteria from soil having broad antifungal spectrum against Rhizoctonia solani, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f.sp. lycopersici, and Botrytis cinerea. One isolate selected could resist heat shock of $60^{\circ}C$ for one hour, and had broad antifungal activity in dual culture assay against all tested fungal pathogens and was identified as Bacillus amyloliquefaciens Y1 using 16S rRNA gene sequence. Further investigation for antifungal activity of bacterial culture filtrate (BCF) and butanol crude extract (BCE) of various concentrations showed broad spectrum antifungal activity and fungal growth inhibition significantly increased with increasing concentration with highest growth inhibition of 100% against R. solani with 50% BCF and 11 mm of zone of inhibition against R. solani with 4 mg BCE concentration. Treatment of butanol crude extract resulted in deformation, lysis or degradation of C. gloeosporioides and P. capsici hyphae. Furthermore, B. amyloliquefaciens Y1 produced volatile compounds inhibiting growth of R. solani (70%), C. gloeosporioides (65%) and P. capsici (65-70%) when tested in volatile assay. The results from the study suggest that B. amyloliquefaciens Y1 could be a biocontrol candidate to control fungal diseases in crops.
Keywords
Thermophilic bacteria; Dual culture assay; Bacterial crude extract; Crude extract; Volatile assay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agrios, N.A. 1988. Plant Pathology. 3rdEdn., Academic press, USA. pp.220-222.
2 Baker, K. F., and R. J. Cook. 1982. Biological control of plant pathogens. The American Phytopathological Society, Saint Paul, Minnesota. 433.
3 Baker, K.F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85.   DOI
4 Sarosh, B.R., and J.J. Danielsson, Meijer Transcript profiling of oil seed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea Plant Mol. Biol., 70 (2009), pp.31-45.   DOI
5 Chen, X., H. Koumoutsi, A. Scholz, and R. Borriss. 2009 More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol. 16:14-24.   DOI
6 Cho, S., J. Lee, S.K. Cha, B.J. Kim, and K.S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiology Letters. 223:47-51.   DOI
7 Choudhary, D.K., and B.N. Johri. 2009. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR).Microbiol. Res. 164:493-513.   DOI
8 Cook, R.K. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80.   DOI
9 Ehtesmul-Haque, S., and A. Ghaffar. 1993. Use of rhizobia in the control of root rots diseases of subflower, okra, soyabean and mungbean. J. Phytoathology. 138:157-163.   DOI
10 Esterio, M., J. Auger, C. Ramos, A.S. Walker, G. Munoz, and S. Fillinger, 2009. Botrytis en uva de mesa de exportacion: Situacion actual de sensibilidad a fungicidas en Chile. Rev. Aconex, 103:16-23
11 Ezra, D., W. M. Hess, and G.A. Strobel. 2004. New endophytic isolates of Muscodoralbus, a volatile-antibiotic-producing fungus.Microbiol. 150:4023-4031.   DOI
12 Fernando, W.G.D., R. Ramarathnam, A.S. Krishnamoorthy, and S.C. Savchuk. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil BiolBiochem 37:955-964   DOI
13 Danielsson, J., O. Reva, and J. Meijer. 2007. Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant associated Bacillus amyloliquefaciens Microb. Ecol., 54:134-140   DOI
14 Kai, M., U. Effmert, G. Berg, and B. Piechulla. 2006. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol 157:351-360
15 McSpadden, B.B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol. 94:1252-1258.   DOI
16 Korenblum, E., I. von der Wied, A.L.S. Santos, A.S. Roasdo, G.V. Sebastian, C.M.L.M. Coutinho, F.C.M. Magalhaes, M.M. De Paiva, and L. Seldin. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B.firmis H20-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. App. Microbiol. 98:667-675.   DOI
17 Lee, J.Y., H.W. Jung, and B.K. Hwang. 2005. Streptomyces koyangensis sp. nov., a novel actinomycete that produces 4-phenyl-3-butenoic acid. International J. Syst. Evol. Microbiol. 55:257-262.   DOI
18 Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim , K.H. Park, G.S. Chan, R.D. Park, and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53:358-364.   DOI
19 Michielse, C.B, and M. Rep. 2009.Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10:311-324   DOI
20 Naing, K.W., M. Aness, S.J. Kim., Y. Nam, Y.C. Kim, and K.Y. Kim. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64:55-63.   DOI
21 Niazi, A., S. Manzoor, S. Asari, J. Bejai, J. Meijer, and E. Bongcam-Rudloff. 2014. Genome analysis of Bacillus amyloliquefaciens subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One 9 (8), e104651.   DOI
22 Prusky, D. 1996. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 34, 413-434.   DOI
23 Scholefield, P., and J. Morison. 2010. Assessment of Economic Cost of Endemic Pests and Diseases on the Australian Grape and Wine Industry. Adelaide, Australia: Grape and Wine Research and Development Corporation.
24 Raza W., X. Yang, H. Wu, Y. Wang, Y. Xu, and Q. Shen. 2009. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur. J Plant Pathol 125:471-483   DOI
25 Rini, C.R., and K.K, Sulchana. 2007. Usefulness of Trichoderma spp. and florescent Pseudomonas (Pseudomonas fluorescence) against Rhizoctonia solani and Fusarium oxysporum infecting tomato. J. Trop. Agric. 44:79-82
26 Sang, M.K., S.C. Chun, and K.D. Kim. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control. 46:424-433.   DOI
27 Souto, G.I., O.S. Correa, M.S. Montechhia, N.L. Kerber, N.L. Pucheu, M. Bachur, and A.F. Garcia. 2004. Genetic and functional characterization of a Bacillus sp. Strain execrating surfactin and antifungal metabolite partially identified as iturin -like compounds. J. App. Microbiol. 97:1247-1256.   DOI