• Title/Summary/Keyword: zirconia implant

Search Result 155, Processing Time 0.033 seconds

Evaluation of reliability of zirconia materials to be used in implant-retained restoration on the atrophic bone of the posterior maxilla: A finite element study

  • Degirmenci, Kubra;Kocak-Buyukdere, Ayse;Ekici, Bulent
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 2019
  • PURPOSE. Zirconia materials have been used for implant-retained restorations, but the stress distribution of zirconia is not entirely clear. The aim of this study is to evaluate the stress distribution and risky areas caused by the different design of zirconia restorations on the atrophic bone of the posterior maxilla. MATERIALS AND METHODS. An edentulous D4-type bone model was prepared from radiography of an atrophic posterior maxilla. Monolithic zirconia and zirconia-fused porcelain implant-retained restorations were designed as splinted or non-splinted. 300-N occlusal forces were applied obliquely. Stress analyses were performed using a 3D FEA program. RESULTS. According to stress analysis, the bone between the 1) molar implant and the 2) premolar in the non-splinted monolithic zirconia restoration model was stated as the riskiest area. Similarly, the maximum von Mises stress value was detected on the bone of the non-splinted monolithic zirconia models. CONCLUSION. Splinting of implant-retained restorations can be more critical for monolithic zirconia than zirconia fused to porcelain for the longevity of the bone.

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis (지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.348-354
    • /
    • 2020
  • Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

Clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas (심미가 중요시되는 임플란트 치료시 타이타늄 링크-캐드캠 지르코니아 지대주 사용의 임상적 고려)

  • Kim, Jong-Yub
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.123-133
    • /
    • 2016
  • Currently increasing use of implants, especially in anterior implant esthetics has become a major concern for both the patient and dentist. In the case of thin biotype if the thickness of the gingival soft tissue is less than 2mm, human eye can detect differences of colors depends on underlying materials. The zirconia abutment can be use not only for better esthetics but also for the hygienic because it is less attractive for the plaque deposition when it compare to the metals. Zirconia itself has many advantages as a biomaterial but also has frequent mechanical problems when it use for abutment of internal connection implant. For prevention or reduction of mechanical failures, use of titanium-link with zirconia super-structure which part that connects directly into the implant can be a good alternative. In this literature, I would like to review the clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas.

  • PDF

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

A review of biocompatibility of zirconia and bioactivity as a zirconia implant: In vivo experiment (지르코니아의 생체적합성과 임플란트로서의 생체활성에 대한 연구: In vivo 실험 문헌 고찰)

  • Suh, Da-Won;Kim, Young-Kyun;Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.88-94
    • /
    • 2019
  • Increasing demands for esthetic dental treatment, zirconia, which has high mechanical and esthetic properties, had been applied more and more in clinics. Therefore, assessment of biocompatibility of zirconia is necessary. In this article, a review of in vivo studies of zirconia compatibility was performed. In vivo studies showed zirconia had great biocompatibility both on soft and hard tissue. Studies with various animals and patients reported high biocompatibility of zirconia. In terms of bone synthesis and bone adhesion, zirconia showed similar biocompatible properties to titanium. On the other hand, zirconia could be used as implant. For using as an implant, various methods of Hydroxyapatite (HA) coating had been suggested. Since HA coating on titanium implant showed some problems such as low bonding strength and degeneration of HA, HA-zirconia composite, HA-coated zirconia, and HA-zirconia functionally graded material (FGM) or intermediate layer of alumina had been proposed. These methods showed higher bonding strength and biocompatibility.

Influence of zirconia and titanium fixture materials on stress distribution in abutment screws: a three-dimensional finite element analysis (지르코니아 및 티타늄 고정체 소재가 지대주 나사의 응력 분포에 미치는 영향: 3차원 유한 요소 분석)

  • Kim, Eun Young;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.42-47
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the stability of abutment screws used with the zirconia fixture-based implant system and compare them with those used with the existing titanium fixture system via the finite element method. Methods: A single implant-supported restoration was designed for the finite element analysis. A universal analysis program was used to set 8 occlusal points along the direction to the long axis of the implant, and an occlusal load of 700 N was applied. Results: In all models (Zir and Ti-fixture model), the screw threads presented with the highest von Mises stress (VMS) values, whereas the head and end presented with the lowest VMS values. The VMS of the screw used in the zirconia-fixture model was 5.97% lower than that used in the titanium-fixture model (261.258 vs. 276.911 MPa, respectively) despite statistical significance. Furthermore, the zirconia fixture (352.912 MPa) had a higher stress value (8.42%) than the titanium fixture (332.331 MPa). In a completely tightened titanium fixture implant system, the stress was concentrated in the implant-abutment connection interface, the zirconia fixture presented with a stable stress distribution. Conclusion: Although the zirconia fixture demonstrated a high VMS value, owing to the stiffness and elasticity coefficients of the material, the stress generated in the abutment screws was similar in all models. In conclusion, the zirconia fixture-based implant system presented with a more stable stress distribution in the abutment screws than the titanium fixture-based implant system.

Implant fixed prosthetic treatment using CAD/CAM system in a patient with severe alveolar resorption (임상가를 위한 특집 3 - 심하게 흡수된 치조제를 가진 환자에서 CAD/CAM을 이용한 임플란트 고정성 보철치료)

  • Choi, Yu-Sung
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.126-139
    • /
    • 2012
  • Loss of dentition can lead to not only compromised esthetics and functions of the patient, but also alveolar bone resorption. Bone grafting with prosthetic reconstruction of the gingiva can be selected for the treatment, and it provides many benefits as prosthetic gingival reconstruction does not require a complicated surgical process and is available within a short period of time, with stable clinical results. However, conventional porcelain fused to metal prosthesis has certain limits due to its size, and deformation after several firing procedures. In this clinical report, the author would like to introduce a patient with severe alveolar resorption who was treated with gingiva-shaped zirconia/titanium CAD/CAM implant fixed prosthesis for esthetic and functional rehabilitation. Clinical reports Clinical report 1, 2 : A case of loss of anterior dentition with atrophied alveolar bone. Implant retained zirconia bridge applied with Procera implant bridge system to simulate the gingiva. Upper structure was fabricated with zirconia all ceramic crown. Clinical report 3, 4 : A case of atrophied maxillary alveolus was reconstructed with fixed implant prosthesis, a CAD/CAM designed titanium structure covered wi th resin on its surface. Anterior dentition was reconstructed with zirconia crown. Conclusion and clinical uses. All patients were satisfied with the outcome, and maintained good oral hygiene. Zirconia/titanium implant fixed prosthesis fabricated by CAD/CAM system was highly accurate and showed adequate histological response. No critical failure was seen on the implant fixture and abutment overall. Sites of severe alveolar bone loss can be rehabilitated by implant fixed prosthesis with CAD/CAM system. This type of prosthesis can offer artificial gingival structure and can give more satisfying esthetics and functions, and as a result the patients were able to accept the outcome more fondly, which makes us less than hard to think that it can be a more convenient treatment for the practitioners.

Considerations for the Survival of Complete Arch Implant-Supported Zirconia Restorations; Status of Antagonistic Arches and Stress Distribution on Frameworks: A Case Report

  • Choi, Jung-Yoo;Sim, Jae-Hyuk;Yeo, In-Sung Luke
    • Journal of Korean Dental Science
    • /
    • v.10 no.2
    • /
    • pp.74-81
    • /
    • 2017
  • This report describes two cases of complete arch implant-supported restorations. The first patient had seven dental implants in each arch with monolithic zirconia frameworks. At four weeks' follow-up, the one-piece maxillary framework was fractured, which was re-designed and re-fabricated using laser-sintered cobalt-chrome alloy. The second patient had four implants in the mandible only. A mandibular monolithic zirconia framework and a maxillary conventional complete denture were fabricated and delivered. At five years' follow-up, the patient reported no significant discomfort. Careful consideration and monitoring of the status of antagonistic arches and stress distribution on zirconia frameworks were suggested for complete arch implant-supported fixed restorations.

Surface Changes between Implant and Zircoina Abutment after Loading (하중 후 임프란트와 지르코니아 지대주 사이의 표면 변화)

  • Kim, Moon-Soo;Cho, Young-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.185-195
    • /
    • 2011
  • In this study, titanium abutments and zirconia abutments were connected to each implant in external type implants. After that they were loaded 10000 times with 20Kg as occlusal force. The surface changes of external hexgon part and platform were observed in FESEM image. Viker's hardness of an implant, a titanium abutment and a zirconia abutment were measured respectively. 1. Viker's hardness of an implants, a titanium abutment and a zirconia abutment was $309.80{\pm}11.78$ HV, $318.40{\pm}11.82$ HV, and $1495.30{\pm}16.21$ HV respectively. There was no statistical significance between an implant and a titanium abutment (P>0.05, Anova). However, there was statistical significance between an implant and a zirconia abutment(P<0.05, Anova). 2. The wear was observed at the joint of implant and abutment in both a titanium abutment group and a zirconia abutment group after loading 10,000 times. The zirconia abutment showed more remarkable wear than the titanium one. In conclusion, the wear of external hexagon and platform was much more notable in a zirconia abutment group than a titanium one. It was suggested that it could result from the difference of surface hardness between titanium and zirconia. The wear of junction between an implant and a zirconia abutment becomes more severe, the connection of an implant and an abutment is much more unfit. This is likely to cause loosening and fracture of the abutment screw. so it is considered that the possibility of implant supra-structure failure can be increased.

Three-Dimensional Finite Element Analysis for Comparison between Titanium Implant Abutment and Zirconia Implant Abutment (지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 삼차원적 유한요소응력분석)

  • Yun, Mi-Jung;Kim, Chang-Weop;Jeong, Chan-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.51-61
    • /
    • 2011
  • Recently, restoring implants in the esthetically demanding region, zirconia-based materials are widely used due to their superior mechanical properties, accuracies, and esthetics. The purpose of this study was to investigate the load transfer and mechanical stability of zirconia and titanium implant abutments by using the three-dimensional finite element analysis model. The internal conical joint type and external butt joint type implant system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. An load of 250N was applied vertically beside 3mm of implant axis. Stress distribution of zirconia and titanium implant abutment is similar. The maximum equivalent stress of titanium implant abutment is lower than zirconia implant abutment about 15%. Howevere considering a high mechanical strength that exceed those of titanium implant abutment, zirconia implant abutment had similar mechanical stability of titanium implant abutment clinically.