Mechanical strength of Zirconia Abutment in Implant Restoration

지르코니아 임플란트 지대주의 기계적 강도에 관한 연구

  • Shin, Sung-ae (Department of Prosthodontics, Collage of Dentistry, Pusan National University) ;
  • Kim, Chang-Seop (Department of Prosthodontics, Collage of Dentistry, Pusan National University) ;
  • Cho, Wook (Department of Prosthodontics, Collage of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, Collage of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, Collage of Dentistry, Pusan National University) ;
  • Yun, Ji-Hoon (Osstem Implant Research Center)
  • 신성애 (부산대학교 치과대학 보철학교실) ;
  • 김창섭 (부산대학교 치과대학 보철학교실) ;
  • 조욱 (부산대학교 치과대학 보철학교실) ;
  • 정창모 (부산대학교 치과대학 보철학교실) ;
  • 전영찬 (부산대학교 치과대학 보철학교실) ;
  • 윤지훈 (오스템 임플란트 연구소)
  • Received : 2009.10.03
  • Accepted : 2009.12.25
  • Published : 2009.12.31

Abstract

Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

목적: 임플란트 보철 수복에서 심미적 요구도가 증진되면서 최근에는 고강도, 고인성을 지니면서 생체적합성 우수하고 치아의 색과 조화로운 지르코니아 지대주의 사용이 증가하는 추세이다. 몇몇 임상보고를 통해 지르코니아 지대주의 우수한 주위조직 반응과 단기간의 성공적인 결과가 보고 되었으나, 장기간의 안정성을 평가하는 기계적 강도에 관한 연구는 미흡한 실정이다. 이에 본 연구에서는 직경, 각도, 연결방식이 상이한 임플란트 고정체 - 지르코니아 지대주의 단순 파절강도와 반복하중에 의한 피로한계 측정을 통해 지르코니아 지대주의 기계적 안정성을 평가해 보고자 하였다. 재료와 방법: ISO규정에 따라 지르코니아 지대주-고정체를 변연골이 3mm 흡수된 조건에서 $30^{\circ}$경사하중으로 압축굽힘강도를 측정하고, 그 값의 80%를 최대하중으로 10%를 최소하중으로 하여 10Hz의 sine형 반복하중을 $5{\times}10^6$ 주기를 초과하는 조건의 내구성한계를 측정하였다. 지르코니아 지대주로는 regular diameter를 가지면서 external butt joint의 straight 지대주와 $17^{\circ}$ angled 지대주, 그리고 narrow diameter 이면서 external butt joint의 straight 지대주와 internal conical joint의 straight 지대주를 사용하였다. 압축굽힘강도 값을 일원분산분석과 사후검정으로 검증하였으며, 피로파절면을 전자주사현미경을 통해 관찰했다. 결과: 압축굽힘강도는 최소 927N 이상으로, 직경의 차이에 따른 유의한 차이를 보였으며( P<.05), 내구성 한계는 503N에서 868N까지의 번위를 보였다. 결론: 지르코니아 지대주는 구강내 기능하중을 견딜수 있는 적절한 기계적 강도를 가지는 것으로 판단된다.

Keywords

References

  1. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: Toronto study. Part III: Problems and complications encountered. J Prosthet Dent 1990;64:185-9 https://doi.org/10.1016/0022-3913(90)90177-E
  2. Henry PJ, Laney WR, Jemt T, Harris D, Kogh PHJ, Polizzi G, Zarb GA, Hermann I. Osseointegrated implant for single tooth replacement. Int J Oral Maxillofac Implants 1996;11:450-5
  3. Avivi-Arber L, Zarb GA. Clinical effectiveness of implant supported single tooth replacement. Int J Oral Maxillofac Implants 1996;11:311-21
  4. Heydecke G, Sierraalta M, Razzoog M. Evolution and use of alumina oxide single tooth implant abutments: A short review and presentation of two case. Int J Prosthodont 2002;15:488-93
  5. Prestipino V, Ingber A. Esthetic high stregth implant abutment, Part I. J. Esthe Dent 1993;3:29-36
  6. Prestipino V, Ingber A. Esthtic high stregth implant abutment, Part II. J. Esthe Dent 1993;5:63-68 https://doi.org/10.1111/j.1708-8240.1993.tb00750.x
  7. Boudris P, Shoghikian $\acute{E}$, Morin $\acute{E}$, Huntnik P. Esthetic option for implant supprted single tooth restoration. J. Can Dent Assoc. 2001;67:508-14
  8. Ebert A, Hedderich J, Kern M. Retention of zirconia ceramic coping bonded to titanium abutment. Int J Oral Maxillofac Implants 2007;22:921-7
  9. Andressen B. Glausser R, Maglion M, Taylor $\AA$. Ceramic implant abutments for short span FPDs : A prospective 5 years multicenter study. Int J Prosthodont 2003;16:640-6
  10. Prestipino V, Ingber A. All ceramic implant abutment; esthetic indication. J Esthet Dent 1996;8;6:255-62 https://doi.org/10.1111/j.1708-8240.1996.tb00876.x
  11. Brodbeck U. The ZiReal post; a new ceramic implant abutment. J Esthet Restor Dent 2003;15:10-24 https://doi.org/10.1111/j.1708-8240.2003.tb00278.x
  12. Pilathadka S. Vahalova D. Vosahlo T. The zirconia ; a new dental ceramic material. Pargue medical report 2008;108:5-12
  13. Garvie RC, Hannink RH. Ceramic steel? Nature 1975;258:703-4 https://doi.org/10.1038/258703a0
  14. Rimondini L, Cerroni L, Carrassi A. Bacterial colonozation ceramic surface; an vitro and in vivo study. Int J Oral Maxillofac Implants. 2002;17:793-8
  15. Bae KH, Han JS, Kim TI, Seol YJ, Lee YM. Biological stability of zirconia/alumina composite ceramic implant abutment. Kor Perio Assoc. 2006;36:555-65
  16. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-6 https://doi.org/10.1016/0022-3913(92)90338-B
  17. Fischer H, Yilidium M, Schmitz F. Festigkeitsminderung von Zirconoxid abutments infolge der Bearbeitung? Dtsch Zahnarztl Z 1999;54:7:443-5
  18. Gehrke P, Dhom G, Brunner J, Dietrich Wolf, Degidi M, Piattelli A. Zirconium implant abutments; fracture strength and influence of cyclic loading on retaining screw loosening. Q I. 2006;37:1:41-8
  19. Yilidium M, Edelhohh D, Hanisch O, Spiekermann H. Ceramic abutments-a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20:81-91
  20. Balshi TJ. An analysis and management of fractured implants. Int J Oral Maxillofac Implants 1996;11: 660-6
  21. Rangert B, Eng M, Krogh P, Langer B, Rokel NV. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34
  22. Morgan MJ, James D, Pillar RM. Fractures of the fixture component of an osseointegrated implant. Int J Oral Maxillofac Implants 1993;8:409-14
  23. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Impl Res 1997;8:290-8 https://doi.org/10.1034/j.1600-0501.1997.080407.x
  24. Mollersten L, Lockowandt P, Linden LA. Comparison of strength and failure mode of seven implant systems: an in vitro test. J Prosthet Dent 1997;78:582-91 https://doi.org/10.1016/S0022-3913(97)70009-X
  25. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002;88:604-10 https://doi.org/10.1067/mpr.2002.129384
  26. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: An 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26
  27. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995;73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7
  28. Kim Yumki, Oh Bumsuck, Nam sunghun, Jeoun sungsick. Fatique test, Lee Yunhyung, Experimental test for strength of materials, Seoul, Dooyangsa, Korea, 2007, p.155-174
  29. Tripodakis APD, Strub JR, Kappert HF, Witkowski S. Strength and mode of failure of single implant all ceramic abutment restoration under static load. Int J Prosthodont 1995;8:265-72
  30. Strub JR, Gerds T. Fracture strength and failure mode of five different single-tooth implant-abutment combinations. Int J Prosthodont 2003;16:167-71
  31. Wiskott HWA, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications Int J Prosthodont 1995;8:105-16
  32. Yilidium M, Fisher H, Marx R, Edelhoff D. In vivo fracture resistance of implant supported all ceramic restorations. J Prosthet Dent 2003;90:325-31 https://doi.org/10.1016/S0022-3913(03)00514-6
  33. Park IS, Won SY, Bae TS, Song KY, Park CW, Eom TG, Jeong CM. Fatique characteristics of five types of implant-abutment joint designs. Metals and materials international 2008;14:133-8
  34. Att W, Kurun S, Gerds T, Strub JR. Fracture resistance of single tooth implant all ceramic restoration after exposure to the artificial mouth. J Oral Rehab 2006;33;380-6 https://doi.org/10.1111/j.1365-2842.2005.01571.x
  35. Butz F, Heydecke G, Okutan M, Strub JR. Survival rate, fracture strength and failure mode of ceramic implant abutment after chewing simulation. J Oral Rehab 2005;32;838-3 https://doi.org/10.1111/j.1365-2842.2005.01515.x
  36. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Sch$\ddot{a}$rer P. Experimental Zirconia abutments for implant supported single tooth restoration in esthetically demanding regions; 4-year results of prospective clinical study. Int J Prosthodon 2004;17: 285-90
  37. ISO/FDIS 14801 Dentistry-fatigue test for endosseous dental implants, Internal Organization for Standardization, 2003(E)
  38. Simon L. Environmental degradation of zirconia ceramics. J European Ceramic Society 1995;15: 485-502 https://doi.org/10.1016/0955-2219(95)00035-S
  39. Liu SY, Chen IW. Fatique of yittria-stabilized zirconia; I. Fatique damage, II. Fracture origin, and life time. J Am Ceram Soc. 1991;74:1197-205 https://doi.org/10.1111/j.1151-2916.1991.tb04088.x
  40. Dixon DL, Breeding LC, Sadler JP. Comparision of screw loosening, rotation, and deflection. J Prosthet Dent 1995;74:270-8 https://doi.org/10.1016/S0022-3913(05)80134-9
  41. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant abutment connection : an 8-degree taper compared to a butt joint connection Int J Oral Maxillofac Implants 2000;15:519-26
  42. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Rest Dent 1993;13:409-31
  43. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 1981;46:443-9 https://doi.org/10.1016/0022-3913(81)90455-8
  44. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. Limits of human bite strength. J Prosthet Dent 1986;56:226-9 https://doi.org/10.1016/0022-3913(86)90480-4
  45. Haraldson T, Carlsson G. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1997;85:200-8
  46. Daryl IL, Holltway JA. Microstructural and crystallographic surface changes after grinding zirconia based dental ceramics. J Biomed Mater Res B Appl Biomater 2006;76:440-8
  47. Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground y-tzp-zirconia ceramics. J Dent Res 2002;81:487-91 https://doi.org/10.1177/154405910208100711
  48. Sundh A, Mollin M, Sj$\ddot{o}$gren G. Fracture resistance of yttrium oxide partially stabilized zirconia all ceramic bridge after veering and mechanical fatique testing. Dental Materials. 2005;21:476-82 https://doi.org/10.1016/j.dental.2004.07.013
  49. David J. Green. Fractograpy, Kim junghee, An introduction to the mechanical properties of ceramics, Authorized translation of the edition published Cambridge University Press in 1998, Seoul, Scitech-media, 2001, p280-286