Three-Dimensional Finite Element Analysis for Comparison between Titanium Implant Abutment and Zirconia Implant Abutment

지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 삼차원적 유한요소응력분석

  • Yun, Mi-Jung (Department of Prosthodontics, College of Dentistry Pusan National University) ;
  • Kim, Chang-Weop (Department of Prosthodontics, College of Dentistry Pusan National University) ;
  • Jeong, Chan-Mo (Department of Prosthodontics, College of Dentistry Pusan National University) ;
  • Seo, Seung-U (Osstem implant research center)
  • 윤미정 (부산대학교 치과대학 보철학교실) ;
  • 김창섭 (부산대학교 치과대학 보철학교실) ;
  • 정창모 (부산대학교 치과대학 보철학교실) ;
  • 서승우 (오스템 임플란트 연구소)
  • Received : 2011.02.03
  • Accepted : 2011.03.25
  • Published : 2011.03.30

Abstract

Recently, restoring implants in the esthetically demanding region, zirconia-based materials are widely used due to their superior mechanical properties, accuracies, and esthetics. The purpose of this study was to investigate the load transfer and mechanical stability of zirconia and titanium implant abutments by using the three-dimensional finite element analysis model. The internal conical joint type and external butt joint type implant system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. An load of 250N was applied vertically beside 3mm of implant axis. Stress distribution of zirconia and titanium implant abutment is similar. The maximum equivalent stress of titanium implant abutment is lower than zirconia implant abutment about 15%. Howevere considering a high mechanical strength that exceed those of titanium implant abutment, zirconia implant abutment had similar mechanical stability of titanium implant abutment clinically.

최근 심미 보철을 위해 높은 강도와 정밀도를 가지면서 동시에 자연치와 유사한 상아질 색을 구현할 수 있는 세라믹 계열의 지르코니아 임플란트 지대주가 보철 재료로서 각광을 받고 있다. 이에 본 연구에서는 삼차원적 유한요소응력분석을 이용하여 기존의 티타늄 소재의 임플란트 지대주와 지르코니아 소재의 임플란트 지대주의 응력분포비교를 통해 지르코니아 임플란트 지대주의 기계적 안정성을 간접적으로 확인하고자 하였다. 악골에 식립된 internal conical joint type과 external butt joint type의 임플란트 매식체에 티타늄 임플란트 지대주 또는 지르코니아 임플란트 지대주를 지대주 나사로 연결하고 상부에 금합금관을 장착하는 유한요소모형을 설계하였다. 교합면 중심으로부터 3mm 편측에 수직 방향으로 250N의 하중을 인가하여 교합력에 의해 임플란트 지대주에서 발생하는 등가응력분포를 분석하였다. 유한요소분석결과 지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 응력 분포는 유사하게 관찰되었으나 최대등가응력은 임플란트 연결 방식에 상관없이 티타늄 임플란트 지대주에 비해 지르코니아 임플란트 지대주가 약 15% 정도 높게 나타났다. 그럼에도 불구하고 티타늄에 비해 지르코니아의 더 높은 기계적 강도를 고려해 볼 때 임상에서도 기존의 티타늄 임플란트 지대주와 마찬가지로 지르코니아 임플란트 지대주도 임상적인 기계적 안정성을 가질 것으로 생각된다.

Keywords

References

  1. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: Toronto study. Part II: Problems and complications encountered. J Prosthet Dent 1990;64:185-9 https://doi.org/10.1016/0022-3913(90)90177-E
  2. Henry PJ, Laney WR, Jent T, Harris D, Kogh PHJ, Polizzi G, Zarb GA, Hermann I. Osseointegrated implant for single tooth replacement. Int J Oral Maxillofac Implants 1996;11:450-5
  3. Boudris P, Shoghikian E, Morin E, Huntnik P. Esthetic option for implant supported single tooth restoration. J Can Dent Assoc 2001;67:508-14
  4. Ebert A, Hedderich J, Kern M. Retention of zirconia ceramic coping bonded to titanium abutment. Int J Oral Maxillofac Implants 2007;22:921-7
  5. Heydecke G, Sierraalta M, Razzoog M. Evolution and use of alumina oxide single tooth implant abutments: A short review and presentation of two case. Int J Prosthodont 2002;15:488-93
  6. Andressen B, Glausser R, Maglion M, Taylor Å. Ceramic implant abutments for short span FPDs: A prospective 5 years multicenter study. Int J Prosthodont 2003;16:640-6
  7. Pilathadka S, Valhalova D, Vosahlo T. The zirconia ; a new dental ceramic material. Pargue medical report 2008;108:5-12
  8. Rimondini L, Cerroni L, Carrassi A. Bacterial colonozation ceramic surface; an vitro and in vivo study. Int J Oral Maxillofac Implants 2002;17:793-8
  9. Balshi TJ. An analysis and management of fractured implants. Int J Oral Maxillofac Implants 1996;11:660-6
  10. Norton MR. An in vitro evaluation of the strenght of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Impl Res 1997;8:290-8 https://doi.org/10.1034/j.1600-0501.1997.080407.x
  11. Mollersten L, Lockowandt P, Linden LA. Comparison of stength and failure mode of seven implant systems; an in vitro test. J Prosthet Dent 1997;78:582-91 https://doi.org/10.1016/S0022-3913(97)70009-X
  12. Yilidium M, Fisher H, Marx R, Edelhoff D. In vivo fracture resistance of implant supported all ceramic restorations. J Prosthet Dent 2003;90:325-31 https://doi.org/10.1016/S0022-3913(03)00514-6
  13. Butz F, Heydecke G, Okutan M, Strub JR. Survival rate, fracture strength and failure mode of ceramic implant abutment after chewing simulation. J Oral Rehab 2005;32:838-43 https://doi.org/10.1111/j.1365-2842.2005.01515.x
  14. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Scharer P. Experimental zirconia abutments for implant supported single tooth restoration in esthetically demanding regions; 4-year results of prospective clinical study. Int J Prosthodon 2004;17:285-90
  15. Major M Ash Jr.. Wheeler's Dental Anatomy, physiology and occlusion. 7th ed W.B. Saunders Co. 1993:218-31
  16. ANSYS Introduction, SAS ip Inc., 2007
  17. Boyer R, Welsch G, Collings EW. Materials Properties Handbook: Titanium Alloys. ASM International: Materials Park, 1994
  18. John M. Structural Alloys Handbook, CINDAS/Purdue University, West Lafayette, IN, 1996
  19. O'Brien WJ. Dental materials and their selection. 2nd ed. Chicago: Quintessence 1997:259-72
  20. Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative Materials used in implant occlusal surfaces. J Prosthet Dent 1992;:361-4
  21. Chun H, Shin H, Han C, Lee S. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 2006;21:195-202
  22. Simon L. Environmental degradation of zirconia ceramics. J European Ceramic Society 1995;15:485-502 https://doi.org/10.1016/0955-2219(95)00035-S
  23. Yilidium M, Edelhohh D, Hanisch O, Speikerman H. Ceramic abutments-a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20:81-91
  24. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. Limits of human bite strength. J Prosthet Dent 1986;56:226-9 https://doi.org/10.1016/0022-3913(86)90480-4
  25. Daryl IL, Holltway JA. Microstructural and crystallographic surface changes after grinding zirconia based dental ceramics. J Biomed Mater Res B Appl Biomater 2006;76:440-8
  26. Sundh A, Mollin M, Sjogren G. Fracture resistance of yttrium oxide partially stabilized zirconia all ceramic bridge after veneering and mechanical fatigue testing. Dental Materials 2005;21:476-82 https://doi.org/10.1016/j.dental.2004.07.013
  27. Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater 2008;24:633-8 https://doi.org/10.1016/j.dental.2007.06.030
  28. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater 2009;25:383-91 https://doi.org/10.1016/j.dental.2008.09.001
  29. Pcconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25 https://doi.org/10.1016/S0142-9612(98)00010-6
  30. Subbarao EC, Maiti HS, Srivastava KK. Martensitic transformation in zirconia. Phys Status Solidi Series A 1974;21:9-40 https://doi.org/10.1002/pssa.2210210102
  31. Kobayashi K, Kuwajima H, Masaki T. Thase change and mechanical properties of $ZrO_2-Y_2O_3$ solid electrolyte after ageing. Solid State Ionics 1981;3/4:489-93 https://doi.org/10.1016/0167-2738(81)90138-7
  32. Simon L. Environmental degradation of zirconia ceramics. J European Ceramic Societ 1995;15:485-502 https://doi.org/10.1016/0955-2219(95)00035-S
  33. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant abutment connection : an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26