• Title/Summary/Keyword: zinc-indium

Search Result 308, Processing Time 0.032 seconds

Electrical properties of Indium Zinc Tin tummy Transparent Conducting Oxide which doped impurities (Indium Zinc Tin turnary Transparent Conducting Oxide에서의 dopant 첨가에 따른 전기적 특성)

  • Seo, Han;Park, Jung-Ho;Choi, Byung-Hyun;Jy, Mi-Jung;Kim, Sea-Gee;Ju, Byeong-Kwon;Hong, Sung-Pyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.183-183
    • /
    • 2009
  • 본 연구에선 ITO에 사용되는 Indium의 양을 줄이기 위해 ITO와 유사한 성질을 보이는 조성인 Indium - Zinc - Tin Turnary compound를 연구하였다. 각 조성은 Indium - Zinc - Tin Turnary compound를 기본으로 하여 Zinc site에 이종원소인 Al2O3와 Ga2O3를 doping함에 따라 변화되는 전기적 특성을 살며보았다. 분석에 사용한 Ceramic pellet은 일반적인 Ceramic process를 거쳐 제작되었다. 각 조성의 전기적 특성은 TCR meter와 Hall effect analyser를 이용하여 측정하였고, X-ray diffraction measurements(XRD), Scanning Electron microscope(SEM)를 이용하여 결정학적 특성을 분석하였다.

  • PDF

Electrical Characteristics of Solution Processed In-Ga-ZnO Thin Film Transistors (IGZO TFTs) with Various Ratio of Materials

  • Lee, Na-Yeong;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.2-293.2
    • /
    • 2016
  • The In this paper, we have fabricated the solution processed In-Ga-ZnO thin film transistors (IGZO TFTs) by varying indium and gallium ratio. The indium ratio of IGZO TFTs was changed from 1 to 5 at fixed gallium and zinc oxide atomic percent of 1:1 and gallium ratio was varied from 1 to 5 at fixed indium and zinc oxide atomic percent of 1:1. When the indium ratio was increased at fixed gallium and zinc oxide ratio of 1:1, threshold voltage was negatively shifted from 1.03 to -6.18 V and also mobility was increased from 0.018 to $0.076cm2/V{\cdot}sec$. It means that the number of carriers in IGZO TFTs were increased due to great formation of the oxygen vacancies which generate electrons. In contrast, when the gallium ratio was increased in IGZO TFTs with indium and zinc oxide ration of 1:1, the on/off current ratio was increased from $1.88{\times}104$ to $2.22{\times}105$. It is because gallium have stronger chemical bonds with oxygen than that with the zinc and indium ions that lead to the decreased in electron concentration.

  • PDF

Composite of Indium and Polysorbate 20 as Inhibitor for Zinc Corrosion in Alkaline Solution

  • Li, Xiaoping;Liang, Man;Zhou, Hebing;Huang, Qiming;Lv, Dongsheng;Li, Weishan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1566-1570
    • /
    • 2012
  • The combined use of indium and polysorbate 20 (Tween 20) was considered as a new inhibition technique for zinc corrosion. Zn and Zn-In alloy coatings were prepared by electrodeposition and their morphology and composition were characterized by scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The corrosion inhibition effect of indium and Tween 20 on zinc was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiencies obtained from Tafel and EIS analyses are well in agreement. Zinc corrosion can be inhibited to some extent by the individual use of indium and Tween 20 and higher corrosion inhibition efficiency can be obtained by the combined use of indium and Tween 20.

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Effect of annealing temperature on amorphous indium zinc oxide thin films prepared by a sol-gel spin-coating method

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • Transparent conductive indium zinc oxide thin films were prepared by spin-coating a sol-gel solution. Zinc acetate dihydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] and indium acetate [In$(CH_3COO)_3$] were used as starting precursors, and 2-methoxyethanol with 1-propanol as solvents. Upon annealing in a temperature range from 500 to $1000^{\circ}C$, the thin film crystallizes into polycrystalline $In_2O_3$(ZnO). The lowest electrical resistivity was obtained at an annealing temperature of $700^{\circ}C$ as $2{\Omega}{\cdot}cm$. Average optical transmittances were higher than 80% at all annealing temperatures. These experimental results confirm that the sol-gel spin-coating can be a good simplified practical method for forming transparent electrodes.

Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications

  • Chang, Seong-Pil;Ju, Byeong-Kwon
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.61-64
    • /
    • 2012
  • The ultraviolet and visible light responsive properties of the amorphous indium gallium zinc oxide thin film transistor have been investigated. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistor operate in the enhancement mode with saturation mobility of $6.99cm^2/Vs$, threshold voltage of 13.5 V, subthreshold slope of 1.58 V/dec and an on/off current ratio of $2.45{\times}10^8$. The transistor was subsequently characterized in respect of visible light and UV illuminations in order to investigate its potential for possible use as a detector. The performance of the transistor is indicates a high-photosensitivity in the off-state with a ratio of photocurrent to dark current of $5.74{\times}10^2$. The obtained results reveal that the amorphous indium gallium zinc oxide thin film transistor can be used to fabricate UV photodetector operating in the 366 nm.

Characteristics of indium zinc oxide thin films with input power and film thickness (투입전력 및 두께 변화 조건에 따른 Indium zinc oxide 박막의 특성)

  • Rim, You-Seung;Kim, Sang-Mo;Keum, Min-Jong;Son, In-Hwan;Jang, Kyung-Wook;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.406-407
    • /
    • 2007
  • We prepared indium zinc oxide (IZO) thin film for cathode electrode such as an application of flat panel display by using the facing targets sputtering (FTS) method at room temperature. The effects of input power and film thickness were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, microstructure and transmittance. We could obtain properties of IZO thin films of under $10^{-3}\;{\Omega}-cm$ in resistivity and the thin films of over 90% in transmittance. Also, we obtained IZO thin films which were an amorphous structure.

  • PDF

Recovery of Gallium and Indium from Zinc Residues by Acid Leaching (산침출에 의한 아연제련잔사로부터 갈륨 및 인디움의 회수)

  • 이화영;김성규;오종기
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.22-26
    • /
    • 1993
  • The flowsheet for the recovery of gallium and indium from zinc residues has been established based on the sulfuric acid treatment. In comparison with the alkali treatment, the method proposed in this work allowed the recovery of indium together with gallium. The majority of iron contained in leach liquor could be removed through the two-stage neutrallization under oxidative or reductive atmosphere. Crude gallium and indium could be obtained through the alkali and/or acid leaching of the products generated from the above treatment. In addition, cementation of indium with zinc powders could also be used for the concentration of it from weak acid solutions.

  • PDF

Effects of post anneal for the INZO films prepared by ultrasonic spray pyrolysis

  • Lan, Wen-How;Li, Yue-Lin;Chung, Yu-Chieh;Yu, Cheng-Chang;Chou, Yi-Chun;Wu, Yi-Da;Huang, Kai-Feng;Chen, Lung-Chien
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After film deposition, different anneal temperature treatment as 350, 450, $550^{\circ}C$ were applied. Electrical properties as concentration and mobility were characterized by Hall measurement. The surface morphology and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both films, the concentration variation of the films at different heat treatment temperature was realized. Donors correspond to zinc related states dominate the conduction mechanism for these INZO films after $550^{\circ}C$ high temperature heat treatment process.