• Title/Summary/Keyword: zinc-binding

Search Result 190, Processing Time 0.019 seconds

Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Park, Jonghyurk;Shin, Jae-Heon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.966-969
    • /
    • 2012
  • From a practical viewpoint, the topic of electrical stability in oxide thin-film transistors (TFTs) has attracted strong interest from researchers. Positive bias stress and constant current stress tests on indium-gallium-zinc-oxide (IGZO)-TFTs have revealed that an IGZO-TFT with a larger Ga portion has stronger stability, which is closely related with the strong binding of O atoms, as determined from an X-ray photoelectron spectroscopy analysis.

NMR Studies of Zinc-binding Luteinizing Hormone Releasing Hormone

  • Kim, Dae-Sung;Lee, Mi-Sun;Lee, Chang-Jun;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • Luteinizing Hormone Releasing Hormone(LHRH) is a decapeptide neurotransmitter known to be regulated by metal ions in the hyperthalamus. Zn-binding LHRH complex was systhesized, and zinc-LHRH complex was studied to understand what kinds of structural modifications would be critical in the LHRH releasing mechanism. Both nonexchangeable and exchangeable $^1H-NMR$ signal assignments were accomplished by pH-dependent and COSY NMR experiments. In addition, $^1H-NMR$ chemical shift changes of a-proton and peptide NH NMR signals at different pH condition, and $^1H-NMR$ signal differences between metal free and metallo-LHRH complex was monitored. NMR signals exhibit that primary metal-binding sites are nitrogens donor of imidazole ring and Arg, and peptide oxygen of Pro-His in the sequence. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers $(2{\sim}7)$ out of 10 amino acids.

  • PDF

Characterization of pH-dependent structural properties of hydrolase PncA using NMR

  • Yi, Jong-Jae;Kim, Won-Je;Rhee, Jin-Kyu;Lim, Jongsoo;Lee, Bong-Jin;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.144-148
    • /
    • 2018
  • Catalytic enzyme Pyrazinamidase (PncA) from Mycobacterium tuberculosis can hydrolyze substrate pyrazinamide (PZA) to pyrazoic acid (POA) as active form of compound. Using NMR spectroscopy, pH-dependent catalytic properties were monitored including metal binding mode during converting PZA to POA. There seems to be a conformational change through zinc binding in active site from the perturbation of peak intensities in series of 2D HSQC spectra the conformation changes through zinc binding.

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

Structural assessment of the tetramerization domain and DNA-binding domain of CP2c

  • Jo, Ku-Sung;Ryu, Ki-Sung;Yu, Hee-Wan;Lee, Seu-Na;Kim, Ji-Hun;Kim, Eun-Hee;Wang, Chae-Yeon;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.119-124
    • /
    • 2018
  • Although the transcription factor CP2c has been recently validated as a promising target for development of novel anticancer therapy, its structure has not been solved yet. In the present study, the purified recombinant protein corresponding to the tetramerization domain of CP2c appeared to be well folded, whereas the Elf-1 domain showed a largely unfolded conformation. Particularly, the Elf-1 domain, which contains the putative DNA-binding region, showed a conformational equilibrium between relatively less-ordered and well-ordered conformers. Interestingly, addition of zinc shifted the equilibrium to the relatively more structured conformer, whereas zinc binding decreased the overall stability of the protein, leading to a promoted precipitation. Likewise, a dodecapeptide that has been suggested to bind to the Elf-1 domain also appeared to shift the conformational equilibrium and to destabilize the protein. These results constitute the first structural characterization of the CP2c domains and newly suggest that zinc ion might be involved in the conformational regulation of the protein.

Zinc Accumulation in the Cell of Zinc-Tolerant Bacteria, Pseudomonas chlororaphis, and Recovery of Zinc from the Cells Accumulating Zinc (아연 내성균의 균체내 아연 축적특성 및 균체내 축적된 아연의 회수)

  • 조주식;한문규
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.317-327
    • /
    • 1996
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Zinc-tolerant microorganism, such as Pseudomonas chlororaphis which possessed the ability to accumulate zinc, was isolated from industrial wastewaters polluted with various heavy metals. The characteristics of zinc accumulation in the cells, recovery of the zinc from the cells accumulating zinc, were investigated. Removal rate of zinc from the solution containing 100 mall of Zinc by zinc-tolerant microorganism was more than 90% at 48 hours after inoiulation of the microorganisms. A large number of the electron-dense granules were found mainly on thIn cell wall and membrane fractions, when determined by transmission electron microscope. Energy dispersive X- ray spectroscopy revealed that the electron-dense granules were zinc complex with the substances binding Heavy metals. The zinc accumulated into cells was not desorbed by distilled water, but more than 80% of the zinc accumulated was desorbed by 0.1M-EDTA. The residues of the cells after combustion at 55$0^{\circ}C$ amounted to about 21% of the dry weight of the cells. EDS analysis showed that the residues were comparatively pure zinc compounds containing more than 79% of zinc.

  • PDF

Evaluation of Acceptor Binding Energy of Nitrogen-Doped Zinc Oxide Thin Films Grown by Dielectric Barrier Discharge in Pulsed Laser Deposition

  • Lee, Deuk-Hee;Chun, Yoon-Soo;Lee, Sang-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.200-203
    • /
    • 2011
  • In this research, nitrogen (N)-doped zinc oxide (ZnO) thin films have been grown on a sapphire substrate by dielectric barrier discharge (DBD) in pulsed laser deposition (PLD). DBD has been used as an effective way for massive in-situ generation of N-plasma under conventional PLD process conditions. Low-temperature photoluminescence spectra of N-doped ZnO thin films provided near-band-edge emission after a thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound excitation peak ($A^{\circ}X$) that indicated acceptor doping of ZnO with N. The acceptor binding energy of the N acceptor was estimated to be approximately 145 MeV based on the results of temperature-dependent photoluminescence (PL) measurements.

Systematic Chirality Investigations of Zn-TLM binding Sites by 2D-NOESY Back-calculations

  • Kim, Daesung;Hoshik Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.50-58
    • /
    • 1998
  • The systematic chirality investigations were made on the basic of the fact that zinc-binding tallysomycin (ZnTLMA) could have chiral centers (Zn, NC3, C6) at possible 4-, 5-, and 6-coordination models. Although our NMR data exhibit that the ligation sites are ${\beta}$-aminoalanine, ${\beta}$-hydroxyhistidine, and pyrimidine moiety, all possible coordination modes were tested out to see what kind of chiralities on NC3-C6 are favorable to each coordination mode. Tests were also made that take into account the specific configuration of functional groups, including ${\beta}$-aminoalanine, sugar ring, and ${\beta}$-hydroxyhistidine. Tests were finally extended to zinc-water binding and specific conformational studies by introducing various hydrogen bonding networks associated with the propionamide side chain and the carbamide group of mannose. Results of systematic chirality investigations exhibit that the S-S configuration of NC3-C6 is favorable to all of coordination models, but the R-S configuration, if exists at all, should have internal strain on C6 chiral center.

  • PDF

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.