• Title/Summary/Keyword: zeta-potential

Search Result 611, Processing Time 0.029 seconds

Polyethyleneimine based Delivery System Coated with Hyaluronate Amine for Improved pDNA Transfection Efficiency (개선된 플라스미드 DNA 전달 효율을 위한 히알루론 아민 코팅 폴리에틸렌이민 기반 전달 시스템)

  • Oh, Kyoung-yeon;Jang, Yongho;Lee, Eunbi;Kim, Tae-ho;Kim, Hyuncheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2022
  • Since the pandemic of COVID-19, active investigation to develop immunity to infectious disease by delivering nucleic acids has been proceeded. Particularly, many studies have been conducted on non-viral vector as several vital side-effects which were found on nucleic acid delivery system using viral vectors. In this study, we have developed plasmid DNA (pDNA) loaded-hyaluronic acid derivative (HA) coated-polyethyleneimine (PEI) based polyplex for enhanced nucleic acid delivery efficiency. We have optimized the ratio of pDNA : PEI : HA by measuring size and protein transcription efficiency. The final product, polyplex-HA, was characterized through measuring size, zeta-potential and TEM image. Intracellular uptake and protein transcription efficiency were compared to commercially available transfection reagent, lipofectamine, through fluorescence image and flow cytometry. In conclusion, polyplex-HA presents a novel gene delivery system for efficient and stable protein transcription since it is available for delivering various genetic materials and has less immunoreactivity.

Study on Stabilization of Retinaldehyde using Drug-in-Cyclodextrinin-Liposome (DCL) for Skin Wrinkle Improvement (레틴알 안정화를 위한 사이클로덱스트린-리포좀에 관한 연구)

  • Ha, Ji Hoon;Choi, Hyeong;Hong, In Ki;Han, Sang-Kuen;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Retinaldehyde (RA), vitamin A derivative, is an intermediate between retinol and retinoic acid and has an excellent wrinkle improving effect. In this study, Drug-in-cyclodextrin-in-liposome (DCL) was used to enhance the stability and skin penetration of RA. The complex of RA and hydroxypropyl-beta-cyclodextrin (HP-β-CD) was prepared by the freeze-drying method, and the presence or absence of inclusion of retinal was confirmed by UV-Vis spectrometer, FT-IR and SEM images. RA was captured in HP-β-CD about 95.6% on 1 : 15 (w/w). The retinal-HP-β-CD complex was encapsulated in liposomes using a homomixer and microfluidizer, with an average particle size of 215 ± 4.2 nm and a zeta potential of -31.2 ± 0.5 mv. In the evaluation of the degradation stability of RA, degradation rate of RA-HP-β-CD-liposomes in water was 1.8% higher than RA-liposome (5.8%), RA-HP-β-CD complex (9.7%) and RA alone (37.6%). RA cream (0.05% RA) including RA-HP-β-CD-liposomes was prepared for clinical test with wrinkle-improving efficacy and skin dermis denseness evaluated for 2 or 4 weeks. RA cream showed a significant wrinkle improving effect without skin irritation. In conclusion, it was confirmed that the double stabilization technology using the DCL system contribu tes to the effect of improving skin wrinkles by increasing the stabilization of retinal.

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method (착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조)

  • Lim, Chang Sung
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2008
  • Nano core shell structures of $TiO_2$ particles coated on surface of ZnO nanoparticles were prepared by the polymerized complex and sol-gel method. The average particle size of ZnO by the polymerized complex method showed 100 nm and the average particle size of $TiO_2$ by the sol-gel method showed below 10 nm. The average particle size of $ZnO@TiO_2$ nano core shell struture represented about 150 nm. The agglomeration between the ZnO particles using the polymerized complex method was highly controlled by the uniform absorption of $TiO_2$ colloid on the spherical ZnO surfaces. The driving force of heterogeneous bonding between ZnO and $TiO_2$ was induced by the Coulomb force. The ZnO and $TiO_2$ particles electrified with + and - charges, respectively, resulted in strong bonding by the difference of iso-electric point (IEP) when they laid neutrality pH area, depending on the heterogeneous surface electron electrified by the different zeta potential on the pH values.

Assessment on Impact Factor for Dehydration of Mine Drainage Sludge Using Flocculant and Dewatering Tube(KOMIR-Tube System) (응집제 및 탈수튜브(KOMIR-Tube 시스템)를 활용한 광산배수 슬러지 탈수 영향인자 평가)

  • Misun Park;Juin Ko;Gwanin Bak;Seunghan Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.263-270
    • /
    • 2024
  • In this study, impact factors for dehydration with KOMIR-Tube system using flocculant and dewatering tube were evaluated for mine drainage sludges. The experiments were conducted on semi-active facility sludges with water contents above 90 % using KOMIR-Tube system. The flocculant and input amount were determined from laboratory experiment and the dewatering efficiency was verified onsite experiment. The sludge characteristics were identified by instrumental analysis such as zeta potential measurement, particle size analysis, XRD, XRF and SEM-EDS. Selection of flocculants for sludge dewatering treatment need to consider not only precipitated rate but also filterated rate. Floc size has to keep at least 0.7 mm. From on-site experiments, sludge dewatering using KOMIR-Tube system suggests to carry out April and May that is low rainfall and humidity considering to climate conditions. Also, dewatering rate depends on the crystal degree of mineral that mainly makes up sludges. Particularly, goethite of the iron hydroxides has better dewatering rate than ferrihydrite. Ferrihydrite is low degree of crystallinity and uncleared or broad shaped crystal, goethite is good crystallinity with needle shaped crystal so that the effect of flocculation and dewatering showed to depend on the crystal. In results, impact factors of dewatering for mine drainage sludges are related to flocculant, climate, crystallinity and shape of iron hydroxides.

The Preparation and Physicochemical Properties of Dipalmitoylphosphatidylcholine/Cholesterol/Fluorinated Surfactant Vesicle Incorporated Fatty Acid Salt (불소화지방산염 첨가에 의한 디팔미토일포스파티딜콜린/콜레스테롤/불소화계면활성제 베지클의 제조와 물성 측정 연구)

  • Park, Young Ju;Kwon, Kyung Ok;Kim, Myung Ja
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.457-461
    • /
    • 1998
  • The vesicle system of DPPC(dipalmitoylphosphaticylcholine)/Chol(Cholesterol) has been modified by incorporating various mole fractions of flourinated surfactant($C_8F_{17}(CH_2)_2OCO-CH_2CH(SO_3Na)COO(CH_2)_2C_8F_{17}$. Sodium bis(1H,1H,2H,2H-heptadecaflurododecyl)-2-sulfosuccinate, FS)/fluorinated fatty acid salt ($C_7F_{15}COONH_4$, ammoniumpentadecaflurooctyrate, FFS), and their physicochemical properties have been investigated in an attempt to enhance the stability of phospholipid vesicle system. The ${\zeta}$-potential measurement by use of Zetamaster sub-micron Particle Electrophoresis Analyzer (Malvern Co.) showed that a charged homogeneous DPPC/Chol/FS vesicle has been formed owing to the incorporated FFS effect on the membrane, playing a role as a cosurfactant in the bilayer between DPPC and FS components. With increase in the concentration of FFS, it was found that the particle size and also surface charge of the DPPC/Chol/FS vesicle decreased. The stability of DPPC/Chol/FS/FFS liposome was found to be enhanced significantly compared to that of DPPC/Chol/FS according to the dispersity change as a function of time. The release rate of dye molecule of Methylene Blue from the DPPC/Chol/FS/FFS vesicle was determined to be slower than that of DPPC/Chol/FS system, and it may be attributed to the increase in microviscosity of the hydrophobic region in the bilayer. The affinfinity of DPPC/Chol/FS/FFS vesicles to albumin was found to be slightly lowered compared to that of DPPC/Chol/FS. Based on these findings, it was confirmed that a more stable and homogeneous vesicle system of DPPC/Chol/FS could be prepared by addition of FFS, acting as a cosurfactant in the aggregate formation.

  • PDF

Effectiveness and Preparation of Nano-emulsion of a Rapeseed Oil Extract Originated from Jeju with PIT Emulsifying System (PIT유화시스템을 이용한 제주산 유채씨앗 오일추출물의 나노에멀젼의 제조 및 효과)

  • Joo, Se-Jin;Kim, Hack-Soo;Lee, Jeong-Koo;Lee, Min-Hee;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.486-494
    • /
    • 2012
  • Nano-emulsion with phase inversion temperature (PIT) emulsifying system was prepared to use rapeseed oil from originating Jeju in order to apply various cosmetic applications. Natural rape seed oil (NRSO) extraction was extracted using n-hexane as a solvent. NRSO extract showed a light yellowish color of viscous liquid as well as yield was $43{\pm}2.5%$. Acid value was $2.76{\pm}0.5$ and gravity was $0.89{\pm}0.05$. Droplet size of PIT-Yuche-NE with 20wt% of rapeseed oil was 50-120nm (average: $82{\pm}5.8nm$) and zeta potential was -29.5mV. It was thermodynamically good stable emulsion due to $(PEG)_{5-30}$fattyacidether. Some conclusions from the result of characteristic experiment were obtained as follows. First, the anti-oxidative activity was measured by free radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl radical). Anti-oxidative activity of PIT-Yuche-NE was $37.2{\pm}6.7%$ on 10mg/mL compared with PIT-Toco-NE (Natural tocopherol nano-emulsion, $28.8{\pm}6.5%$ on 10 mg/mL) and PIT-Nokcha-NE (Green tea extract nano-emulsion, $29.6{\pm}7.2%$ on 10mg/mL). Second, the collagen synthesis activity of PIT-Yuche-NE was $148{\pm}15.2%$ compared with PIT-Toco-NE (Natural tocopherol nano-emulsion, $121{\pm}13.5%$ on 10mg/mL) and PIT-Nokcha-NE (Green tea extract nano-emulsion, $95{\pm}12.7%$ on 10mg/mL). Third, the effectiveness of moisturizing activity of Yuche-CRM with Aramo-TS after 6 hours increase $47{\pm}3.9%$ (*p-value£0.05, n=7) whereas Both Toco-CRM was $30{\pm}5.2%$ (*p-value£0.05, n=7) and Nokcha-CRM was $35{\pm}4.5%$. Therefore, Yuche-CRM has higher moisturizing effect than other two creams. Finally, Nano-emulsion stabilizing rapeseed oil using PIT emulsifying system of this study can be used to apply cosmetics industry and pharmaceutical industry.

Behavior of NOM Fouling in Submerged Photocatalytic Membrane Reactor Combined with $TiO_2$ Nanoparticles ($TiO_2$ 나노입자/UV 결합 침지형 중공사막 시스템에서 자연유기물의 파울링거동)

  • Park, Seung-Soo;Seo, Hyung-Jun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2011
  • In this study, combined effect of airflow rate, $TiO_2$ concentration, solution pH and $Ca^{+2}$ addition on HA (humic acid) fouling in submerged, photocatalytic hollow-fiber microfiltraiton was investigated systematically. Results showed that UV irradiation alone without $TiO_2$ nanoparticles could reduce HA fouling by 40% higher than the fouling obtained without UV irradiation. Compared to the HA fouling without UV irradiation and $TiO_2$ nanoparticles, the HA fouling reduction was about 25% higher only after the addition of $TiO_2$ nanoparticles. Both adsorptive and hydrophilic properties of $TiO_2$ nanoparticles for the HA can be involved in mitigating membrane fouling. It was also found that the aeration itself had lowest effect on fouling mitigation while the HA fouling was affected significantly by solution pH. Transient behavior of zeta potential at different solution pHs suggested that electrostatic interactions between HA and $TiO_2$ nanoparticles should improve photocatalytic efficiency on HA fouling. $TiO_2$ concentration was observed to be more important factor than airflow rate to reduce HA fouling, implying that surface reactivity on $TiO_2$ naoparticles should be important fouling mitigation mechanisms in submerged, photocatalyic microfiltraiton. This was further supported by investigating the effect of $Ca^{+2}$ addition on fouling mitigation. At higher pH (= 10), addition of $Ca^{+2}$ can play an important role in bridging between HA and $TiO_2$ nanoparticles and increasing surface reactivity on nanoparticles, thereby reducing membrane fouling.

Evaluation of the Removal Characteristics of Pollutants in Storm Runoff Depending on the Media Properties (여재 특성에 따른 강우 유출수 내 오염물질 제거특성 평가)

  • Kim, Tae-Gyun;Cho, Kang-Woo;Song, Kyung-Guen;Yoon, Min-Hyuk;Ahn, Kyu-Hong;Hong, Sung-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • The aims of this study were to evaluate the removal efficiency for various pollutants in urban storm runoff by a filtration device, and to determine design parameters depending on filter media properties. Appropriate selection of filter media will affect the size and life time of the filtration device. Sets of column tests were performed in order to evaluate the removal efficiency by perlite and a synthetic resin. An investigation of surface properties including CEC (cation exchange capacity) and zeta-potential suggested that the perlite had a superior adsorption capability for cationic pollutants. TCODcr and turbidity were analyzed to investigate the removal characteristic of particulate pollutant. In both columns, the particles in the collected storm runoff was almost completely capture with a small EBCT (empty bed contact time) of 2.5 minutes. Complete clogging at the EBCT of 2.5 minutes occurred after 630 minutes in the perlite column and 810 minutes in the resin column. The removal efficiency of TCODcr and turbidity at the EBCT of 2.5 minutes decreased to below 70% due to an wall effect. The removal efficiency for dissolved pollutant (SCODcr) was negligible due to the insufficient contact time for adsorption. The removal of heavy metals (Cu, Zn, Pb) was mostly ascribed to the filtration of particles containing metals, since the relationship between CEC and the removal efficiency was not apparent. The result of this study would be valuable for the application of filtration device to control of urban storm runoff.

Effect of the pH Value of Seed Coating Solution on Microstructure of Silicalite-1 Zeolite Separation Layer Grown on α-Alumina Support (종결정 코팅용액 pH 값이 α-알루미나 지지체 표면에 성장하는 Silicalite-1 제올라이트 분리층의 미세구조에 미치는 영향)

  • Hu, Sigui;Kim, Min-Zy;Lee, Du-Hyoung;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.422-430
    • /
    • 2015
  • The present study announces that the pH value of seed coating solution makes a significant effect on the microstructure of silicalite-1 zeolite layer formed on ${\alpha}$-alumina support. Seed with an average diameter of 75 nm was dispersed in ethanol to prepare three kinds of seed coating solutions with different pH values, and dip-coated on the support. The pH value was controlled to be 2.2, 7.0, and 9.3, respectively. In the secondary growth process, pH 7 seed solution resulted an uniform, 3 to $4{\mu}m$ thick, completely covered, and 100 nm grained silicalite-1 zeolite separation layer. The uniformity and completeness were explained by a uniform, closely packed, multi-layered, and completely covered seed coating in the pH 7 condition. In the condition, ${\alpha}$-alumina support and seed are oppositely charged: support is positively charged (8.4 mV) and seed, negatively (-1.7 mV). The opposite charging induced a strong electrostatic attraction between seed and support, which made the good seed coating state. On the other hand, pH 2.2 and pH 9.3 seed solutions resulted non-uniform, partially covered, and around $1{\mu}m$ grained zeolite separation layer, since seed and support are the same sign charged in the conditions. The same sign charging induced a strong electrostatic repulsion between seed and support which caused a low coverage of seed. It could be concluded that the pH value of seed coating solution is a key parameter to determine the microstructure of silicalite-1 zeolite separation layer.