Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.422

Effect of the pH Value of Seed Coating Solution on Microstructure of Silicalite-1 Zeolite Separation Layer Grown on α-Alumina Support  

Hu, Sigui (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Kim, Min-Zy (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Lee, Du-Hyoung (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Sharma, Pankaj (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Han, Moon-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Cho, Churl-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Publication Information
Membrane Journal / v.25, no.5, 2015 , pp. 422-430 More about this Journal
Abstract
The present study announces that the pH value of seed coating solution makes a significant effect on the microstructure of silicalite-1 zeolite layer formed on ${\alpha}$-alumina support. Seed with an average diameter of 75 nm was dispersed in ethanol to prepare three kinds of seed coating solutions with different pH values, and dip-coated on the support. The pH value was controlled to be 2.2, 7.0, and 9.3, respectively. In the secondary growth process, pH 7 seed solution resulted an uniform, 3 to $4{\mu}m$ thick, completely covered, and 100 nm grained silicalite-1 zeolite separation layer. The uniformity and completeness were explained by a uniform, closely packed, multi-layered, and completely covered seed coating in the pH 7 condition. In the condition, ${\alpha}$-alumina support and seed are oppositely charged: support is positively charged (8.4 mV) and seed, negatively (-1.7 mV). The opposite charging induced a strong electrostatic attraction between seed and support, which made the good seed coating state. On the other hand, pH 2.2 and pH 9.3 seed solutions resulted non-uniform, partially covered, and around $1{\mu}m$ grained zeolite separation layer, since seed and support are the same sign charged in the conditions. The same sign charging induced a strong electrostatic repulsion between seed and support which caused a low coverage of seed. It could be concluded that the pH value of seed coating solution is a key parameter to determine the microstructure of silicalite-1 zeolite separation layer.
Keywords
silicalite-1 zeolite; membrane; seed; dip coating; zeta potential;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. Pan and Y. S. Lin "Template-free secondary growth synthesis of MFI type zeolite membranes", Micropor. Mesopor. Mater., 319, 43 (2001).
2 S. J. Jeong, J. G. Yeo, M. H. Han, and C. H. Cho, "A study on permeation of $CO_2-N_2-O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode", Membr. J., 23, 343 (2013).
3 M. J. Kim, P. Sharma, M. H. Han, and C. H. Cho, "Effect of seed coating layer on the microstructure of NaA zeolite separation layer grown on ${\alpha}$ -alumina support", Membr. J., 24, 378 (2014).
4 Y. Yan, M. E. Davis, and G. R. Gavalas, "Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment", J. Membr. Sci., 123, 95 (1997).   DOI
5 Q. Liu, R. Noble, J. L. Falconer, and H. Funke, "Organics/water separation by pervaporation with a zeolite membrane", J. Membr. Sci., 117, 163 (1996).   DOI
6 Y. Yan and T. Bein, "Zeolite thin films with tunable molecular sieve function", J. Am. Chem. Soc., 117, 9990 (1995).   DOI
7 M. Nomura, T. Yamaguchi, and S. i. Nakao, "Silicalite membranes modified by counter diffusion CVD technique", Ind. Eng. Chem. Res., 36, 4217 (1997).   DOI
8 C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, Y. H. Kim, and S. H. Hyun, "Secondary growth of sodium type faujasite zeolite layers on a porous ${\alpha}$ -$Al_2O_3$ tube and the $CO_2/N_2$ separation", Membr. J., 17, 254 (2007).
9 A. J. Burggraafa, Z. A. E. P. Vroon, K. Keizer, and H. Verweij, "Permeation of single gases in thin zeolite MFI membranes", J. Membr. Sci., 77, 144 (1998).
10 T. Kuzniatsova, Y. H. Kim, K. Shqau, P. K. Dutta, and H. Verweij, "Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings", Micropor. Mesopor. Mater., 102, 103 (2007).
11 J. H. Dong, Y. S. Lin, M. Z. C. Hu, R. A. Peascoe, and E. A. Payzant, "Template removal associated micro structural development of porous ceramic supported MFI zeolite membranes", Micropor. Mesopor. Mater., 241, 34 (2000).
12 J. H. Dong, K. Wegner, and Y. S. Lin, "Synthesis of submicron polycrystalline MFI zeolite films on porous ceramic supports", J. Membr. Sci., 233, 148 (1998).
13 H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, and K. I. Okamoto, "Synthesis of a zeolite NaA membrane for pervaporation of water/organic liquid mixtures", J. Mater. Sci. Lett., 14, 206 (1995).   DOI
14 L. C. Boudreau and M. Tsapatsis, "A highly oriented thin film of zeolite A", Chem. Mater., 9, 1705 (1997).   DOI
15 Y. Yan, S. R. Chaudhuri, and A. Sarkar, "Synthesis of oriented zeolite molecular sieve films with controlled morphologies", Chem. Mater., 8, 473 (1996).   DOI
16 H. R. Lee, H. S. Ahn, I. J. Park, S. B. Lee, and Y. Lee, "Pervaporation of aqueous iso-propyl alcohol solution using NaA zeolite membrane", Membr. J., 16, 25 (2006).
17 M. Yun, H. K. Jeong, D. Jeong, H. S. Ahn, and Y. Lee, "Pervaporation characteristics of NaA type zeolite membrane substituted to $K^+$", Membr. J., 18, 250 (2008).
18 G. Bonilla, M. Tsapatsis, D. G. Viachos, and G. Xomeritakis, "Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth", J. Membr. Sci., 182, 103 (2001).   DOI
19 Y. J. Fu, C. C. Hu, K. R. Lee, and J. Y. Lai, "Separation of ethanol/water mixtures by pervaporation through zeolite-filled polysulfone membrane containing 3-aminopropyltrimethoxysilane", Desalination, 193, 119 (2006).   DOI
20 A. Huang, Y. S. Lin, and W. Yang, "Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding", J. Membr. Sci., 245, 41 (2004).   DOI
21 M. D. Jia, B. Chen, R. D. Noble, and J. L. Falconer, "Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures", J. Membr. Sci., 1, 90 (1994).
22 M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, and M. Sadakata, "Characterization of zeolite L nanoclusters", Chem. Mater., 7, 1734 (1995).   DOI
23 J. Warzywoda, R. D. Edelman, and R. W. Thompson, "Crystallization of high-silica ZSM-5 in the presence of seeds", Zeolites, 11, 318 (1991).   DOI
24 X. Xu, W. Yang, J. Liu, and L. Lin, "Synthesis and perfection evaluation of NaA zeolite membrane", Sep. Purif. Technol., 25, 475 (2001).   DOI
25 E. A. Tsokanis and R. W. Thompson, "Further investigations of nucleation by initial breeding in the Al-free NH4-ZSM-5 system", Zeolites, 12, 369 (1992).   DOI
26 L. Gora and R. W. Thompson, "Controlled addition of aged mother liquor to zeolite NaA synthesis solutions", Zeolites, 18, 132 (1997).   DOI
27 R. Xu, J. Chen, Z. Gao, W. Yan, and E. A. Payzant, "From zeolite from to porous MOF materials- the 40th anniversary of international zeolite conference", pp. 102-105, Elsevier, Beijing (2007).
28 J. Hedlund, J. Sterte, M. Anthonis, A. J. Bons, B. Carstensen, N. Corcoran, D. Cox, H. Deckman, W. D. Gijnst, P. D. Moor, F. Lai, J. Mchenry, W. Mortier, J. Reinoso, and J. Peters, "Size-dependent properties of nanocrystalline silicalite synthesized with synthematically varied crystal sized", Langmuir, 4696, 20 (2004).
29 T. Seike, M. Matsuda, and M. Miyake, "Fabrication of Y-type zeolite films by electrophoretic deposition", Solid State Ionics, 123, 151 (2002).
30 V. Nikolakis, M. Tsapatsis, and D. G. Vlachos, "Physicochemical characterization of silicalite-1 surface and its implications on crystal growth", Langmuir, 4619, 19 (2003).
31 J. K. Lee, K. S. Boo, S. C. Kim, and W. K. Kim, "Zeta potential measurement of colloid particles suspended in a liquid", Trans. Korean Soc. Mech. Eng. B, 2, 339 (1995).
32 T. M. Davis, T. O. Drews, H. Ramana, C. He, J. Dong, H. Schnablegger, M. A. Katsoulaskis, E. Kokkoli, A. V. McCormick, R. L. Penn, and M. Tsapatsis, "Mechanistic principles of nanoparticle evolution to zeolite crystals", Nature Materials, 5, 400-408 (2006).   DOI