Browse > Article
http://dx.doi.org/10.5806/AST.2008.21.3.237

Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method  

Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Analytical Science and Technology / v.21, no.3, 2008 , pp. 237-243 More about this Journal
Abstract
Nano core shell structures of $TiO_2$ particles coated on surface of ZnO nanoparticles were prepared by the polymerized complex and sol-gel method. The average particle size of ZnO by the polymerized complex method showed 100 nm and the average particle size of $TiO_2$ by the sol-gel method showed below 10 nm. The average particle size of $ZnO@TiO_2$ nano core shell struture represented about 150 nm. The agglomeration between the ZnO particles using the polymerized complex method was highly controlled by the uniform absorption of $TiO_2$ colloid on the spherical ZnO surfaces. The driving force of heterogeneous bonding between ZnO and $TiO_2$ was induced by the Coulomb force. The ZnO and $TiO_2$ particles electrified with + and - charges, respectively, resulted in strong bonding by the difference of iso-electric point (IEP) when they laid neutrality pH area, depending on the heterogeneous surface electron electrified by the different zeta potential on the pH values.
Keywords
$ZnO@TiO_2$; nano coreshell structure; polymerized complex; sol-gel method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. K. Lonsdale, J. Membrane. Sci. 23, 1, 111(1985)   DOI   ScienceOn
2 W. B. Russel, D. A. Savile, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, 1989
3 Y. Han, S. H. Hong and K. Xu, Materials Letters, 56, 5, 744-747(2002)   DOI   ScienceOn
4 H. B. Hopfenberg, H. Strathmann, and A. S. Michaels, J. Membrane. Sci. 15, 3, 317(1983)   DOI   ScienceOn
5 H. Jiang, L. Gao, Materials Chemistry and Physics, 77, 878(2002)   DOI   ScienceOn
6 R. G. Avery and J. D. F. Ramsay, In Adsorption and Catalysis on Oxides, page 149, 1985
7 C. J. Brinker and G. W. Scherer, Sol-gel Science, Academic Press, San Diego, 1990
8 B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun, and J. C. Sun, J. Power Sources, 118, 1-2, 47(2003)   DOI   ScienceOn
9 F. Rancan, S. Rosan, K. Boehm, E. Fernndez, M. E. Hidalgo, W. Quihot, C. Rubio, F. Boehm, H. Piazena, U. Oltmanns, J. Photochemistry and photobiology B, 68, 133(2002)   DOI   ScienceOn
10 S. Kim, C. F. Zukoski, J. Colloid Interface Sci. 139, 198(1990)   DOI   ScienceOn
11 A. salvador, M. C. Pascual-Marti, J. R. Adell, A. Requeni, J. G. March, J. Pharmaceutical and Biomedical Analysis, 22, 301(2000)   DOI   ScienceOn
12 D. W. Schaefer, J. E. Martin, P. Wiltzius, D. S. Cannell, In kinetics of Aggregation and Gelation, page 71, Elsevier Science Publishers B.V. 1984
13 R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Materials Chemistry and Physics, 75, 39(2002)   DOI
14 M. P. Pechini, United States Patent Office, 3, 33, 697, Patented by July 11, 1967
15 S. W. Yun, Y. Shin and S. G. Cho, J. Korean Ceramic Society, 35, 5, 498(1998)
16 Y. J. Kwon, K. H. Kim, C. S. Lim and K. B. Shim, J. Ceramic Process Research, 3, 3, 146(2002)
17 A. V. Diken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Luminescence, 87-89, 454(2000)   DOI   ScienceOn