DOI QR코드

DOI QR Code

Polyethyleneimine based Delivery System Coated with Hyaluronate Amine for Improved pDNA Transfection Efficiency

개선된 플라스미드 DNA 전달 효율을 위한 히알루론 아민 코팅 폴리에틸렌이민 기반 전달 시스템

  • Oh, Kyoung-yeon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Jang, Yongho (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Eunbi (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Tae-ho (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Hyuncheol (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 오경연 (서강대학교 화공생명공학과) ;
  • 장용호 (서강대학교 화공생명공학과) ;
  • 이은비 (서강대학교 화공생명공학과) ;
  • 김태호 (서강대학교 화공생명공학과) ;
  • 김현철 (서강대학교 화공생명공학과)
  • Received : 2021.12.14
  • Accepted : 2022.01.17
  • Published : 2022.02.10

Abstract

Since the pandemic of COVID-19, active investigation to develop immunity to infectious disease by delivering nucleic acids has been proceeded. Particularly, many studies have been conducted on non-viral vector as several vital side-effects which were found on nucleic acid delivery system using viral vectors. In this study, we have developed plasmid DNA (pDNA) loaded-hyaluronic acid derivative (HA) coated-polyethyleneimine (PEI) based polyplex for enhanced nucleic acid delivery efficiency. We have optimized the ratio of pDNA : PEI : HA by measuring size and protein transcription efficiency. The final product, polyplex-HA, was characterized through measuring size, zeta-potential and TEM image. Intracellular uptake and protein transcription efficiency were compared to commercially available transfection reagent, lipofectamine, through fluorescence image and flow cytometry. In conclusion, polyplex-HA presents a novel gene delivery system for efficient and stable protein transcription since it is available for delivering various genetic materials and has less immunoreactivity.

현재 진행 중인 코로나19의 세계적 유행을 기점으로 유전자 전달을 통한 면역 형성에 대한 연구가 활발히 진행되고 있다. 특히 바이러스를 통한 유전자 전달이 부작용이 다수 발견됨에 따라 비바이러스성 유전자 전달체에 대한 요구가 크게 증가하였다. 본 연구에서는 생체적합물질인 히알루론 아민으로 코팅한 폴리에틸렌이민-플라스미드 DNA 복합체를 통한 효율적인 유전자 전달 시스템을 제안했다. 다양한 조성에서 생성된 폴리에틸렌이민-플라스미드 DNA 복합체(polyplex)와 히알루론 아민으로 코팅한 폴리에틸렌이민-플라스미드 DNA 복합체(polyplex-HA)의 크기 및 플라스미드 DNA 발현 정도를 비교해 각 물질의 최적 비율을 찾아냈고 복합체의 크기 및 제타 전위, 에너지 필터링 투과 전자현미경(EF-TEM) 이미지를 통해 입자의 특성을 평가했다. 세포 내 전달 및 발현 효율을 형광현미경과 유세포분석기를 통해 상용화 되어있는 유전자 전달체인 lipofectamine과 비교 분석했다. 본 연구에서 제안된 polyplex-HA는 pDNA 뿐만 아니라 다양한 유전물질을 전달할 수 있으며, 전달체에 대한 면역반응이 적어 다회성 투여에 유리하여 미래의 백신 플랫폼의 기반이 될 수 있을 것으로 기대할 수 있다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Re-search Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2016R1A6A1A03012845, and NRF- 2020R1A2B5B02001733), Republic of Korea.

References

  1. K. S. Park, X. Sun, M. E. Aikins, and J. J. Moon, Non-viral COVID-19 vaccine delivery systems, Adv. Drug Deliv. Rev., 169, 137-151 (2021). https://doi.org/10.1016/j.addr.2020.12.008
  2. N. Pardi, M. J. Hogan, F. W. Porter, and D. Weissman, mRNA Vaccines-a new era in vaccinology, Nat. Rev. Drug Discov., 17, 261-279 (2018). https://doi.org/10.1038/nrd.2017.243
  3. N. N. Zhang, X. F. Li, Y. Q. Deng, H. Zhao, Y. J. Huang, G. Yang, and C. F. Qin, A thermostable mRNA vaccine against COVID-19, Cell, 182, 1271-1283. e1216 (2020). https://doi.org/10.1016/j.cell.2020.07.024
  4. M. A. Liu, A comparison of plasmid DNA and mRNA as vaccine technologies, Vaccines, 7, 37 (2019). https://doi.org/10.3390/vaccines7020037
  5. H. H. Nguyen, J. Park, S. J. Park, C. S. Lee, S. Hwang, Y. B. Shin, T. H. Ha, and M. Kim, Long-term stability and integrity of plasmid-based DNA data storage, Polymers, 10, 28 (2018). https://doi.org/10.3390/polym10010028
  6. P. Roy and R. Noad, Virus-like particles as a vaccine delivery system: Myths and facts, Hum. Vaccin., 4, 5-12 (2008). https://doi.org/10.4161/hv.4.1.5559
  7. Z. Y. Yang, L. S. Wyatt, W. P. Kong, Z. Moodie, B. Moss, and G. J. Nabel, Overcoming immunity to a viral vaccine by DNA priming before vector boosting., J. Virol., 77, 799-803 (2003). https://doi.org/10.1128/JVI.77.1.799-803.2003
  8. K. Wylon, S. Dolle, and M. Worm, Polyethylene glycol as a cause of anaphylaxis, Allergy Asthma Clin. Immunol., 12, 1-3 (2016). https://doi.org/10.1186/s13223-015-0107-8
  9. S. Uzgun, G. Nica, C. Pfeifer, M. Bosinco, K. Michaelis, J.-F. Lutz, M. Schneider, J. Rosenecker, and C. Rudolph, PEGylation improves nanoparticle formation and transfection efficiency of messenger RNA, Pharm. Res., 28, 2223-2232 (2011). https://doi.org/10.1007/s11095-011-0464-z
  10. R. Webster, V. Elliott, B. K. Park, D. Walker, M. Hankin, and P. Taupin, PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals, In F. M. Veronese (eds.). PEGylated protein drugs: Basic science and clinical applications, 127-146 (2009).
  11. S. A. Smith, L. I. Selby, A. P. Johnston, and G. K. Such, The endosomal escape of nanoparticles: toward more efficient cellular delivery, Bioconjugate Chem., 30, 263-272 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00732
  12. O. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P, Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc. Nat. Acad. Sci., 92, 7297-7301 (1995). https://doi.org/10.1073/pnas.92.16.7297
  13. Y. Yang, Y. Jia, Y. Xiao, Y. Hao, L. Zhang, X. Chen, J. He, Y. Zhao, Z. Qian, Tumor-Targeting Anti-MicroRNA-155 Delivery Based on Biodegradable Poly (ester amine) and Hyaluronic Acid Shielding for Lung Cancer Therapy, ChemPhysChem, 19, 2058-2069 (2018). https://doi.org/10.1002/cphc.201701375
  14. R. V. Benjaminsen, M. A. Mattebjerg, J. R. Henriksen, S. M. Moghimi, and T. L. Andresen, The possible "proton sponge" effect of polyethylenimine (PEI) does not include change in lysosomal pH, Mol. Ther., 21, 149-157 (2013). https://doi.org/10.1038/mt.2012.185
  15. J. Chen, H. Tian, A. Kano, A. Maruyama, X. Chen, and T. G. Park, In vitro and in vivo gene delivery using polyethyleniminepoly (hydroxyethyl glutamine) as a non-viral carrier, J. Control. Release, 152, e134-e136 (2011). https://doi.org/10.1016/j.jconrel.2011.08.045
  16. R. Racine and Mummert, M. E. Hyaluronan endocytosis: mechanisms of uptake and biological functions, Brian Ceresa (eds.). Molecular Regulation of Endocytosis, 377-390 (2012).
  17. A. Akinc, M. Thomas, A. M. Klibanov, R. Langer, Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis, J. Gene Med., 7, 657-663 (2005). https://doi.org/10.1002/jgm.696