• 제목/요약/키워드: zero-sum sequences

검색결과 7건 처리시간 0.017초

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

반환 지향 프로그래밍 공격에 대한 효율적인 방어 기법 설계 및 구현 (Design and Implementation of Efficient Mitigation against Return-oriented Programming)

  • 김지홍;김인혁;민창우;엄영익
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1018-1025
    • /
    • 2014
  • 반환 지향 프로그래밍 공격(ROP)은 프로그램에 존재하는 반환 명령어로 끝나는 코드 조각들을 조합하여 가젯을 만들고, 연속적으로 실행하여 스택의 내용을 조작함으로써 프로그램의 제어권을 가져오는 공격이다. 이에 대한 기존 방어기법은 높은 실행 오버헤드와 바이너리 증가 오버헤드를 갖거나, 적용 범위의 제한이 있는 문제점이 있다. 본 논문에서는 기존 기법의 문제점을 갖지 않으면서 성능 및 바이너리 크기 증가 측면에서 효율적인 방어 기법인 zero-sum defender를 제안한다. 반환 지향 프로그래밍 공격은 정상적인 프로그램의 흐름과 다르게, 함수 호출 명령어가 실행되지 않고 여러 반환 명령어가 실행되는 실행 특성을 가진다. 제안 기법은 이러한 특성을 이용하여 프로그램 실행 흐름이 반환 지향 프로그래밍 공격에 의해 오용되는지 모니터링하여 방어 기능을 수행한다. 실제 공격 모델에 대한 실험을 통해 방어 기법의 효용성을 확인하였고, 벤치마크 실험을 통해 약 2%의 성능 오버헤드와 약 1%의 바이너리 크기 증가만으로 방어가 이루어짐을 확인하였다.

ON THE COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES GENERATED BY ρ*-MIXING SEQUENCES

  • Ko, Mi-Hwa;Kim, Tae-Sung;Ryu, Dae-Hee
    • 대한수학회논문집
    • /
    • 제23권4호
    • /
    • pp.597-606
    • /
    • 2008
  • Let {$Y_{ij}-{\infty}\;<\;i\;<\;{\infty}$} be a doubly infinite sequence of identically distributed and ${\rho}^*$-mixing random variables with zero means and finite variances and {$a_{ij}-{\infty}\;<\;i\;<\;{\infty}$} an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of {${\sum}^n_{k=1}\;{\sum}^{\infty}_{i=-{\infty}}\;a_{i+k}Y_i/n^{1/p}$; $n\;{\geq}\;1$} under some suitable conditions. We extend Theorem 1.1 of Li and Zhang [Y. X. Li and L. X. Zhang, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), 191.197.] to the ${\rho}^*$-mixing case.

Complete Moment Convergence of Moving Average Processes Generated by Negatively Associated Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.507-513
    • /
    • 2010
  • Let {$X_i,-{\infty}$ < 1 < $\infty$} be a doubly infinite sequence of identically distributed and negatively associated random variables with mean zero and finite variance and {$a_i,\;-{\infty}$ < i < ${\infty}$} be an absolutely summable sequence of real numbers. Define a moving average process as $Y_n={\sum}_{i=-\infty}^{\infty}a_{i+n}X_i$, n $\geq$ 1 and $S_n=Y_1+{\cdots}+Y_n$. In this paper we prove that E|$X_1$|$^rh$($|X_1|^p$) < $\infty$ implies ${\sum}_{n=1}^{\infty}n^{r/p-2-q/p}h(n)E{max_{1{\leq}k{\leq}n}|S_k|-{\epsilon}n^{1/p}}{_+^q}<{\infty}$ and ${\sum}_{n=1}^{\infty}n^{r/p-2}h(n)E{sup_{k{\leq}n}|k^{-1/p}S_k|-{\epsilon}}{_+^q}<{\infty}$ for all ${\epsilon}$ > 0 and all q > 0, where h(x) > 0 (x > 0) is a slowly varying function, 1 ${\leq}$ p < 2 and r > 1 + p/2.

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • 대한수학회지
    • /
    • 제36권6호
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF

HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS DEFINED BY SKEW-SYMMETRIZABLE MATRICES

  • Kang, Oh-Jin
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1379-1410
    • /
    • 2017
  • Kang and Ko introduced a skew-symmetrizable matrix to describe a structure theorem for complete intersections of grade 4. Let $R=k[w_0,\;w_1,\;w_2,\;{\ldots},\;w_m]$ be the polynomial ring over an algebraically closed field k with indetermiantes $w_l$ and deg $w_l=1$, and $I_i$ a homogeneous perfect ideal of grade 3 with type $t_i$ defined by a skew-symmetrizable matrix $G_i(1{\leq}t_i{\leq}4)$. We show that for m = 2 the Hilbert function of the zero dimensional standard k-algebra $R/I_i$ is determined by CI-sequences and a Gorenstein sequence. As an application of this result we show that for i = 1, 2, 3 and for m = 3 a Gorenstein sequence $h(R/H_i)=(1,\;4,\;h_2,\;{\ldots},\;h_s)$ is unimodal, where $H_i$ is the sum of homogeneous perfect ideals $I_i$ and $J_i$ which are geometrically linked by a homogeneous regular sequence z in $I_i{\cap}J_i$.

A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS

  • Geroldinger, Alfred;Schmid, Wolfgang Alexander
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.869-915
    • /
    • 2019
  • Let H be a Krull monoid with class group G such that every class contains a prime divisor. Then every nonunit $a{\in}H$ can be written as a finite product of irreducible elements. If $a=u_1{\cdot}\;{\ldots}\;{\cdot}u_k$ with irreducibles $u_1,{\ldots},u_k{\in}H$, then k is called the length of the factorization and the set L(a) of all possible k is the set of lengths of a. It is well-known that the system ${\mathcal{L}}(H)=\{{\mathcal{L}}(a){\mid}a{\in}H\}$ depends only on the class group G. We study the inverse question asking whether the system ${\mathcal{L}}(H)$ is characteristic for the class group. Let H' be a further Krull monoid with class group G' such that every class contains a prime divisor and suppose that ${\mathcal{L}}(H)={\mathcal{L}}(H^{\prime})$. We show that, if one of the groups G and G' is finite and has rank at most two, then G and G' are isomorphic (apart from two well-known exceptions).