• 제목/요약/키워드: zero-inflated data

검색결과 71건 처리시간 0.027초

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.

랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용 (A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior)

  • 김연경;황범석
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.287-301
    • /
    • 2018
  • 0이 과도하게 많이 나타나는 자료는 여러 다양한 분야에서 흔히 볼 수 있다. 이러한 자료들을 분석할 때 대표적으로 영과잉 포아송 모형이 사용된다. 특히 반응변수들 사이에 상관관계가 존재할 때에는 랜덤효과를 영과잉 포아송 모형에 도입해서 분석해야 한다. 이러한 모형은 주로 빈도론자들의 접근방법으로 분석되어왔는데, 최근에는 베이지안 기법을 사용한 분석도 다양하게 발전되어 왔다. 본 논문에서는 반응변수들 사이에 상관관계가 존재하는 경우 랜덤효과가 포함된 영과잉 포아송 회귀모형을 베이지안 추론 방법을 토대로 제안하였다. 이 모형의 적합성을 판단하기 위해 모의 실험을 통해 랜덤효과를 고려하지 않은 모형과 비교 분석하였다. 또한, 실제 지역사회 건강조사 흡연 자료에 직접 응용하여 그 결과를 살펴보았다.

제로팽창 모형을 이용한 보험데이터 분석 (A Zero-Inated Model for Insurance Data)

  • 최종후;고인미;전수영
    • 응용통계연구
    • /
    • 제24권3호
    • /
    • pp.485-494
    • /
    • 2011
  • 계수(Count) 데이터는 반응변수가 음이 아닌 계수로, 자동차 사고건수나 지진이 일어난 횟수, 보험처리 발생건수 등을 말한다. 이런 경우에는 주로 포아송 회귀모형을 사용하지만, 평균과 분산이 동일한 경우만 이용될 수 있다는 제약이 따른다. 실증적 자료에서는 그룹 간 이질성으로 인해 분산이 매우 큰 과대산포(Overdispersion) 현상을 볼 수 있는데, 이를 무시할 경우 회귀계수나 표준오차가 편의되는 현상이 발생한다. 보험은 보장성 개념이 강하기 때문에 실제로 보험처리가 발생하지 않는 경우가 많아, 보험처리 건수에 '0'값이 있을 수 있다. 본 논문에서는 '0'값이 많은 자료의 분석을 위해 제로팽창 모형(Zero-Inflated Model)을 고려하고, 여러 모형들의 효율성을 실증자료를 통하여 비교하였다. 실증 자료 분석 결과, 과대산포와 제로팽창 현상이 존재하는 자료에서 제로팽창 음이항 모형(Zero-Inflated Negative Binomial Regression Model)이 가장 효율적인 모형임을 보여 주었다.

이변량 영과잉-포아송모형에서 변화시점에 관한 추론 (Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권2호
    • /
    • pp.319-327
    • /
    • 1999
  • 영과잉-포아송분포는 여러 형태의 불량률을 줄이는 생산공정과정에서 유용하게 이용되어 왔다. 또한 생산공정과정 중 미지의 변화시점 이후 불량률의 변화가 있는지를 알아보는 것은 흥미 있는 일이고 연구된바있다. 만약 불량품들이 서로 두가지 다른 형태의 규격에 의해 발생되었다면, 이는 일변량이 아닌 이변량 영과잉-포아송 분포를 이용해야 할 것이다. 본 논문은 이변량 영과잉-포아송모형에서 어느 미지의 시점 이후 분포의 변화가 있는지를 우도비 검정을 통해 알아본다. 또한 변화가 있다면 변화시점과 그리고 여러 형태의 모수들에 대한 점추정량을 알아보려 한다.

  • PDF

이변량 영과잉-포아송 분포의 적률 (Moments of the Bivariate Zero-Inflated Poisson Distributions)

  • 김경무;이성호;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.47-56
    • /
    • 1998
  • 영과잉-포아송모형는 포아송분포와 베르누이 분포의 혼합모형으로 볼 수 있다. 최근 기술의 발달로 생산공정에서 불량품이 거의 나타나지 않는 경우가 많아 기존의 포아송 분포 보다 영과잉-포아송 분포가 많이 응용되어 진다. 일변량 영과잉-포아송 분포를 이변량 영과잉-포아송 분포로 확장하는 일은 다변량으로 확장하기 위한 전초작업으로 중요하다. 본 논문에서는 세가지 형태의 이변량 영과잉-포아송 분포를 제시하고 이들 분포의 적률을 구하여보았다. 또한 적률을 이용하여 세가지 분포를 비교하여 보았다.

  • PDF

조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석 (Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.583-592
    • /
    • 2015
  • 영-과잉(zero-inflation) 현상은 최근 계수(count) 시계열 분석의 주요토픽으로 다루어지고 있다. 본 논문에서는 영-과잉 계수 시계열의 변동성을 연구하고 있다. 기존의 정수형 모형인 INGARCH(integer valued GRACH) 모형에 조건부 포아송 및 조건부 음이항 분포를 사용하여 변동성에 영-과잉 현상을 추가하였다. 모수 추정 방법으로 EM알고리즘을 사용하였으며 국내 콜레라 발생건수에 적용시켜 보았다.

영과잉을 고려한 중심상업지구 교통사고모형 개발에 관한 연구 (Safety Performance Functions for Central Business Districts Using a Zero-Inflated Model)

  • 이상혁;우용한
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.83-92
    • /
    • 2016
  • PURPOSES : The purpose of this study was to develop safety performance functions (SPFs) that use zero-inflated negative binomial regression models for urban intersections in central business districts (CBDs), and to compare the statistical significance of developed models against that of regular negative binomial regression models. METHODS : To develop and analyze the SPFs of intersections in CBDs, data acquisition was conducted for dependent and independent variables in areas of study. We analyzed the SPFs using zero-inflated negative binomial regression model as well as regular negative binomial regression model. We then compared the results by analyzing the statistical significance of the models. RESULTS : SPFs were estimated for all accidents and injury accidents at intersections in CBDs in terms of variables such as AADT, Number of Lanes at Major Roads, Median Barriers, Right Turn with an Exclusive Turn Lane, Turning Guideline, and Front Signal. We also estimated the log-likelihood at convergence and the likelihood ratio of SPFs for comparing the zero-inflated model with the regular model. In he SPFs, estimated log-likelihood at convergence and the likelihood ratio of the zero-inflated model were at -836.736, 0.193 and -836.415, 0.195. Also estimated the log-likelihood at convergence and likelihood ratio of the regular model were at -843.547, 0.187 and -842.631, 0.189, respectively. These figures demonstrate that zero-inflated negative binomial regression models can better explain traffic accidents at intersections in CBDs. CONCLUSIONS : SPFs that use a zero-inflated negative binomial regression model demonstrate better statistical significance compared with those that use a regular negative binomial regression model.

Sample size calculations for clustered count data based on zero-inflated discrete Weibull regression models

  • Hanna Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.55-64
    • /
    • 2024
  • In this study, we consider the sample size determination problem for clustered count data with many zeros. In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real data the assumptions that should be satisfied when using each model might be violated. We calculate the required sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method, a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows that our proposed method provides accurate results, revealing that the sample size is affected by the distribution skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder length of the stay data collected from Western Australia.

A simple zero inflated bivariate negative binomial regression model with different dispersion parameters

  • Kim, Dongseok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.895-900
    • /
    • 2013
  • In this research, we propose a simple bivariate zero inflated negative binomial regression model with different dispersion for bivariate count data with excess zeros. An application to the demand for health services shows that the proposed model is better than existing models in terms of log-likelihood and AIC.

영과잉 토빗모형을 이용한 한국 소득분포 자료의 베이지안 분석 (Bayesian analysis of Korean income data using zero-inflated Tobit model)

  • 황지수;김세완;오만숙
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.917-929
    • /
    • 2017
  • 한국노동패널조사에서 제공하는 2015년 한국 생산가능인구의 월평균 소득분포를 보면 0 관측치의 비율이 과도하게 높은 형태를 보여 기존의 소득분포에 주로 사용되는 토빗모형으로는 설명에 한계가 있다. 본 연구에서는 영과잉 특성을 반영하여 영과잉 토빗모형을 사용하여 한국인의 소득 자료를 분석한다. 영과잉 토빗모형은 2단계 모형으로 1단계에서는 소득이 0인 그룹을 두 그룹으로 나누는데, 첫 번째 그룹은 노동시장 참여의지가 없어 시장에 참여하지 않으므로 0이 관측되는 그룹(genuine zero)이고 두 번째 그룹은 노동시장 참여의지는 있으나 낮은 임금으로 인하여 절단되어 0이 관측되는 그룹(random zero)으로 가정하였다. 두 번째 random zero 그룹은 0 이상의 연속 자료와 결합하여 토빗모형을 적용한다. 1단계와 2단계 모형에 관심 있는 설명변수를 가진 회귀모형을 적용하여 노동시장 참여여부와 임금 수준에 영향을 미치는 요인을 알아본다. 마코브 체인 몬테칼로 기법을 사용하여 모수를 추정하고 기존의 토빗모형과 비교한 결과 영과잉 토빗모형이 0의 빈도추정과 모형 적합도 면에서 우수한 결과를 보였다. 분석결과 나이가 많을수록, 남자가 여자보다, 학력이 낮을수록, 노동시장에 참여할 가능성이 매우 유의하게 높으며, 사회경제적 지위가 높을수록 그리고 유보임금이 낮을수록 노동시장에 참여하지 않을 확률이 높은 것으로 나타났다. 임금수준을 보면, 남자가 여자보다, 학력이 높을수록, 기혼이 미혼 보다 매우 유의하게 더 높은 임금을 받는 것으로 나타났다.