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Abstract

In this research, we propose a simple bivariate zero inflated negative binomial re-
gression model with different dispersion for bivariate count data with excess zeros. An
application to the demand for health services shows that the proposed model is better
than existing models in terms of log-likelihood and AIC.
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1. Introduction

Regression models are widely used in most fields in order to verify the causality between
variables. But the normal regression model has limits in the research when categorical vari-
ables, especially such as count data, are observed as response variables. Poisson regression
models have an important role in data analysis for count response variables as the normal
regression models occupy a prominent place in data analysis of continuous response vari-
ables. The Poisson regression model has a strong assumption that its mean should be equal
to its variance, although it is hard for a mean and a variance to be equal in real data analy-
sis. Especially, the overdispersion, which means that the variance is greater than the mean,
occurs very often. Negative binomial distributions are used instead of Poisson distribution
in the count regression models as a way of solving the overdispersion. The negative binomial
distribution is a gamma mixture of Poisson distribution, and thus it can be adapted easily
due to an explicit marginal likelihood form.

In this paper, we extend the negative binomial regression models to a bivariate case in
addition to zero-inflation. Since Li et al. (1999) proposed the zero-inflated bivariate count
regression models, Walhin (2001) and Wang et al. (2003) showed the several zero inflated
Poisson, denoted by BZIP models, could be extended to the zero inflated bivariate models
using various Poisson mixtures. But, it is often for the zero-inflation to connect with the
overdispersion, and it is more natural to use negative binomial distributions instead of
Poisson distributions. In this direction, Wang (2003) first proposed the bivariate version of
negative binomial models to control zero-inflation and overdispersion together. However, it
is pointed out as a weakness that the bivariate zero-inflated negative binomial, denoted by
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BZINB models suggested by Wang, use the common dispersersion parameter, which is also
correlation parameter, between two response variables. When we apply BZINB model for
the analysis of bivariate zero-inflated count data which have different dispersions for each of
response variables, the parameter estimates or their standard errors would be inefficient as
the overdispersion leads to underestimation of standard errors in the the univariate Poisson
regression model (Cox, 1983). It is due to the fact that the different dispersions are not
properly taken into account in the BZINB model with common dispersion parameter.

A univariate model naturally extends for bivariate and multivariate model as Choi (2008)
and Hong and Jung (2011). There have been various domestic research on bivariate and
multivariate zero inflated Poisson models. Kim (1998, 2004) studied these models for the
changepoint and Kim et al. (1999) found the moments of the bivariate zero-inflated Poisson
distributions. As an expansion of multivariate zero inflated Poisson models, Kim (2003)
provided an application of multivariate zero-inflated Poisson regression model.

In the present article, we propose a simple bivariate zero inflated negative binomial model,
denoted by BZINBDD, allowing different dispersion parameters for two response variables.
The proposed model is an extension of the Model 1 of BZIP by Walhin (2001). In an
application to the analysis of health-care utilization data described in Cameron et al. (1988),
the proposed BZINBDD model dominates either the generalized bivariate negative binomial,
denoted by GBIVARNB model (Gurmu and Elder, 2000), or the BZINB model (Wang, 2003).

2. Model

Let Y7 and Y be the correlated random variables representing event counts, and let
(y1i,Y2:), @ = 1, -+, n be an observed vector of (Y7,Y2). We propose the following joint
probability function of Y3; and Yo,
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where ¢; represents an extra proportion of zero-zero cell for it" observation, and f(yxs, i,

Tr), k =1, 2 is the conventional negative binomial probability distribution given by
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where 71 and 7y are dispersion parameters for Y7; and Ys;, and pq;, pe; and ¢; depend on
the vectors of covariates x1;, Xo; and z; whose dimensions are k; x 1, ko x 1 and k3 x 1,
respectively. We assume that

f(ykla My Tk‘) =

- - T N
w1 = exp(x1i’ 1), p2i = exp(x2;'B2), and log <1 ) =z,

-
where 6_1, ﬂ; and v are k1 X 1, ko X 1 and k3 x 1 vector of parameters, respectively. The model
(2.1) can be referred to as the bivariate zero inflated negative binomial model with different
dispersion (BZINBDD). If 71 — 0 and 72 — 0, the model given in the proposed model (2.1)
reduces to the Model 1 of Walhin (2001)’s BZIP model. The correlation coefficient of Yy,
and Ygi is

CO’I“’I“(YM, YYQZ) = (biMliM% . (23)

Vg1 + p1i(m + 69)][1 + pai (12 + ¢4)]
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The correlation in the equation (2.3) is slightly different from the correlation of the BZINB
model of Wang (2003, p. 375). In fact, there exist two sources to generate the correlation of
Y1; and Ys; in the BZINB model. The first one is the common dispersion parameter of the
bivariate negative binomial (BNB) distribution, and the second one is the inflated proportion
of zero-zero cell of i*" observation. The correlation of Y;; and Ya; in the proposed model only
depends on the proportion of zero inflation by introducing different dispersion parameters
for two response variables. However, the proposed model may be more appropriate than the
BZINB model for the bivariate zero inflated count data having different dispersions.
The log-likelihood function based on n independent sample is obtained by
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where I(.) is the indicator function taking the value 1 if the condition is true and 0 otherwise.
Using the log-likelihood function in the equation (2.4), we obtain the ML estimator of each
of the parameters. The asymptotic standard errors of the parameters can be obtained from
the the outer product of the gradient (OPG) method (Davidson and MacKinnon, 1993).

3. Application

In this study, we apply the proposed model to the data of 1977-1978 Australia health
survey given by Cameron et al. (1988). Gurmu and Elder (2000) and Wang (2003) already
modelled health-care utilization by applying the GBIVARNB model and BZINB regression
model from the afore-mentioned data. The data were obtained from the Journal of Applied
Econometrics 1997 data archive. We consider the number of consultations with a doctor
during the 2-weeks prior to survey (doctorcon, Y7) and the number of consultations with
non-doctor health professionals (chemist, optician, social worker etc) during the past 4 weeks
prior to survey (nondoccon, Y2) as the response variables. The frequency of non-users who
never use any of services is 73.7 %, and the mean and the variance are 0.302 and 0.637 for
doctor visits, and 0.215 and 0.932 for non-doctor visits. Therefore, two response variables
look like having the different dispersions as well as zero inflation from descriptive statistics.

The twelve variables including Socio-economic variables and the insurance and health
status variables are used as the explanatory variables for uy;, p2; and ¢;. For the detailed
description and summary statistics for the explanatory variables, refer to Cameron et al.
(1988).

Table 3.1 gives the results of parameter estimates, maximized value of the log-likelihood
function and AIC value for the proposed model and the BZINB model of Wang (2003).
The parameter estimates of BZINBDD and BZINB models show the similar results, while
|t| values of Wang’s BZINB model are dramatically greater than those of the BZINBDD
model. In BZINBDD model, 73 and 75 are estimated by 0.632 and 6.561 which are very
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different. It is the evidence of having different dispersions for two response variables in this
data. Therefore, we conjecture that Wang’s BZINB model may underestimate the standard
errors of parameters since it uses the common dispersion parameter, as the overdispersion
leads to an underestimation of standard errors in the the univariate Poisson regression model
(Cox, 1983). In addition, Table 3.1 also shows that the proposed BZINBDD dominates the
BZINB model with respect to both the maximized value of log-likelihood and AIC.

For ¢;, all explanatory variables except income, freepoor, freerepa and chcondl are sig-
nificant at 5% significance level in the proposed BZINBDD model. For pyg;, freepoor, illness
and actdays are significant for doctor visits, while actdays and chcondl are the only two
important determinants of non-doctor health professional visits.

Table 3.1 Estimates from bivariate zero inflated negative binomial models

BZINBDD BZINB®
Doctorcon Nondoccon bi Doctorcon Nondoccon bi
Variable  Est. [t Est. [t Est. [t Est. t| Est. t] Est. t]
Constant -1.251 -4.84 -1.642 -3.21 0.699 1.08 | -1.301 42.30 -1.508 43.80 0.852 11.10
Sex 0.055 0.77 0.110 0.84 -0.453 -2.47| 0.036 0.94 0.205 4.89 -0.407 3.61

Age 1.205 090 -1.976 -0.66 8.131 2.12 | 1.087 18.40 -2.984 47.20 6.391 34.40
Agesq -1.354 -0.93 2576 0.82 -11.823 -2.63| -1.092 11.80 3.747 38.80 -9.503 29.60
Income -0.193 -1.75 -0.068 -0.30 -0.243 -0.89| -0.155 3.12 -0.023 0.40 -0.131 1.27
Levyplus -0.015 -0.15 0.148 0.70 -0.454 -2.17| -0.027 0.59 0.168 3.16 -0.457 4.02
Freepoor -0.499 -2.59 -0.196 -0.43 0.021 0.04 | -0.525 2.65 -0.126 0.58 0.102 0.24
Freerepa -0.027 -0.21 0.375 131 -0.664 -1.70| 0.029 0.55 0.377 6.86 -0.520 2.60

Illness 0.078  3.07 -0.018 -0.37 -0.604 -5.75| 0.072 6.15 -0.051 3.86 -0.669 9.55
Actdays  0.111 15.84 0.095 543 -1.690 -2.52| 0.111 22.70 0.095 17.80 -1.761 2.92
Hscore 0.021 1.53 0.051 1.80 -0.141 -2.43| 0.022 2.55 0.038 4.04 -0.151 3.31
Chcondl -0.039 -0.42 0.278 1.65 -0.268 -1.26| -0.025 0.55 0.324 6.45 -0.195 1.48
Chcond2 -0.007 -0.07 0.857 3.99 -0.961 -245| 0.115 1.78 0.895 14.10 -0.622 2.21

Log(a)® -0.029 0.44
T1 0.632 7.73
T2 6.561 11.43
Log-likel. -5254.0 -5715.9
AIC 10590.0 11511.8

@ The coefficient log(a) is a common dispersion parameter of BZINB model.
b The result of BZINB model is reported in Wang (2003).

Table 3.2 gives the observed and fitted frequencies of the BZINBDD and BZINB models.
The fitted cell frequencies of each model are calculated in the similar method of Gurmu
and Trivedi (1996). Let p(c14,c0:),2 = 1,--+ ,n;¢14,c0; = 0,1,--- | denoted the fitted prob-
ability that (Y7;,Y2;) has (c1,c2). Then the fitted frequency in cell (c1, c2) is calculated as
Z?:l plcris c2i), C1isc2i = 0,1,

From Table 3.2, one can see that the BZINB model tends to overpredict or underpredict
the observed frequencies, especially when Y7 < 1 or Y5 < 1. On the contrary, the BZINBDD
model provides an adequate fit. In general the BZINBDD fits the data better than the
BZINB model does. Let us remark that Table 3.1 and Table 3.2 are obtained by SAS/IML.
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Table 3.2 Observed and fitted frequencies
Nondoccon (Y2)

Model Doctorcon (Y1) 0 1 2 3 4 5+
Observed 3826 196 57 9 17 36
BZINBDD 0 3879.0 167.8 62.0 29.2 15.5 26.9
BZIND 3888.1 284.2 52.5 11.1 2.7 1.1
Observed 670 66 18 4 6 18
BZINBDD 1 575.9 56.4 21.5 10.6 5.8 12.3
BZIND 419.3 139.4 39.9 11.7 3.7 2.1
Observed 148 11 4 1 1 9
BZINBDD 2 169.0 17.4 7.0 3.6 2.1 5.8
BZIND 105.8 54.6 21.8 8.4 3.3 2.6
Observed 25 2 2 0 0 1
BZINBDD 3 53.6 5.9 2.6 1.4 0.9 3.0
BZIND 28.7 20.7 10.8 5.3 2.6 2.7
Observed 19 1 1 0 0 3
BZINBDD 4 20.1 2.4 1.1 0.7 0.4 1.8
BZIND 8.5 8.1 5.4 3.2 1.9 2.6
Observed 28 2 2 0 2 5
BZINBDD 5+ 20.3 2.6 1.3 0.8 0.6 2.6

BZIND 4.6 6.4 6.1 5.1 3.9 11.4

4. Conclusions

This paper proposed a simple bivariate zero inflated negative binomial regression model
with different dispersions on two response variables. In the application of health-care utiliza-
tion, the proposed model is better than the BZINB model in the sense of maximized value
of log-likelihood, AIC and fitted frequencies. The proposed methodology may be further
explored by a suitable simulation for the subsequent research.

The proposed model can be extended to more general BZINBDD model. In fact, the
proposed model ignored the natural correlation by allowing different dispersions. The gen-
eral BZINBDD model can be constructed using the underlying BNB distribution from the
trivariate reduction technique of three independent negative binomial random variables. The
further research may include the estimation and testing problem (for example, testing for
zero inflation, testing for covariance parameter) in the general BZINBDD model.
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