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Abstract
In this study, we consider the sample size determination problem for clustered count data with many zeros.

In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real
data the assumptions that should be satisfied when using each model might be violated. We calculate the required
sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed
data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method,
a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with
many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows
that our proposed method provides accurate results, revealing that the sample size is affected by the distribution
skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder
length of the stay data collected from Western Australia.

Keywords: covariance structure, clustered count data, discrete Weibull regression, Monte Carlo
simulations, sample size determination

1. Introduction

Clustered count data with an excess number of zeros are very common in the biomedical field, clinical
studies, and health research. Zero-inflated models are a natural choice for this data type, with some
studies utilizing these models. Hall (2000) first introduced random effects into a portion of the zero-
inflated Poisson and binomial models. Tapak et al. (2019) extended the zero-inflated exponentiated-
exponential geometric regression in the presence of a random effect. Furthermore, Choo-Wosoba et
al. (2018) proposed a Bayesian approach by combining the Conway–Maxwell–Poisson distribution
with a hurdle component.

Aside from proper data analysis, sample size determination before planning any statistical study
is also a crucial part. Studies considering the sample size calculation for clustered count data with
excessive zeros are scarce. Channouf et al. (2021) recently proposed sample size calculation methods
for hierarchical Poisson and zero-inflated Poisson regression models by extending the work of Shieh
(2001) and using the h-likelihood method with the Monte Carlo simulation to calculate the required
sample size. In the present study, we calculate the required sample size based on a discrete Weibull
model first introduced by Nakagawa and Osaki (1975). The discrete Weibull distribution can handle
both overdispersion and underdispersion; thus, there is a low risk of failing to cope with the features
of the dispersed data type. Yoo (2023) proposed a sample size calculation method for the clustered

1Department of Applied Statistics, Hanshin University, 137 Hanshindae-gil, Osan-si, Gyeonggi-do 18101, Korea. Email:
yoohann@hs.ac.kr.

Published 31 January 2024 / journal homepage: http://csam.or.kr
© 2024 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



56 Hanna Yoo

discrete Weibull regression model, which we expand herein to the zero-inflated data. To date, no
method for the sample size calculation dealing with clustered count data with the zero-inflated discrete
Weibull regression model has yet been reported. In this study, we modify the method of Channouf
et al. (2021) to calculate the required sample size for the zero-inflated discrete Weibull regression
model in the presence of clustered data. Perumean-Chaney et al. (2013) showed that ignoring the
overdispersion within the zero-inflated data inflates the Type 1 error and results in poor estimates.
Thus, considering both dispersion and zero inflation when calculating the sample size is meaningful.

The remainder of this paper is organized as follows: Section 2 presents the proposed sample size
calculation method for clustered zero-inflated discrete Weibull (ZI-DW) model; Section 3 elaborates
on the simulation study conducted to examine the method performance; Section 4 depicts an illustra-
tive example; and Section 5 discusses the results and concludes this work.

2. Sample size for the clustered zero-inflated discrete Weibull regression model

For the clustered data with an excessive number of zeros, we expanded the ZI-DW model with a
random effect. Let Yi j denote the jth subject measured for cluster i, i = 1, . . . , n; j = 1, . . . , ni with the
total number of subjects in the data, N =

∑n
i=1 ni. We assumed Yi j to follow the DW distribution:

Yi j ∼ DW
(
q(Xi j), β

)
, (2.1)

where X′i j = (1, X1,i j, . . . ,Xp,i j) is a covariate vector. The probability mass function for the DW is

fDW

(
Yi j; q(Xi j), β

)
= q(Xi j)Yi j

β

− q(Xi j)(Yi j+1)β , (2.2)

for Yi j = 0, 1, 2, 3, . . . , 0 < q(Xi j) < 1, β > 0. Parameter q(Xi j) is the probability of the outcome
random variable Yi j having a value greater than 0 and parameter β controlling the value range of Yi j.
The distribution became highly skewed as β converged to 0. The DW distribution approached the
Bernoulli distribution as β converged to ∞. We incorporated a random intercept into the model to
consider the subject correlation in the same cluster. The clustered DW regression model is presented
as follows:

log
(
− log(q(Xi j))

)
= θ′Xi j + U0,i = θ0 + θ1X1,i j + θ2X2,i j + · · · + θpXp,i j + U0,i, (2.3)

where θ′ = (θ0, θ1, θ2, . . . , θp) denotes the corresponding (p + 1) regression coefficients associated
with X′i j = (1, X1,i j, . . . , Xp,i j), and U0,i is a random effect following an independently and identically
distributed normal distribution with mean 0 and a common dispersion parameter σ2

0.
In the presence of clustered data with an excessive number of zeros, we extended the DW model

with a zero-inflation parameter. The clustered ZI-DW had the following probability mass function:

fZI−DW

(
Yi j,γ, q(Xi j), β

)
=


(
π(Zi j) +

(
1 − π(Zi j)

)
fDW

(
Yi j, q(Xi j), β

))
for y = 0,(

1 − π(Zi j)
)

fDW

(
Yi j, q(Xi j), β

)
for y = 1, 2, 3, . . . ,

(2.4)

where 0 < π < 1 is the zero-inflation parameter, and fDW (Yi j, q(Xi j), β) is the probability mass function
shown in Equation (2.2). The logit link for π is usually used:

logit
(
π(Zi j)

)
= γ′Zi j = γ0 + γ1Z1,i j + · · · + γqZq,i j, (2.5)
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where Zi j
′ = (1,Z1,i j,Z2,i j, . . . ,Zq,i j)′ is a vector with q covariates, and γ = (γ0, γ1, γ2, . . . , γq)′ is the

corresponding coefficient vector. A binary indicator variable δi j, which is δi j = 1 if Yi j = 0 and δi j = 0
if Yi j > 0, is used for the likelihood of the ZI-DW regression model. We estimated the parameters
by using the h-likelihood first introduced by Lee and Nelder (1996). It extended the penalized quasi-
likelihood to estimate the parameters and was based on the joint distribution of the outcome variable
and the random effect. Unlike the classical likelihood, the h-likelihood is constructed for both fixed
parameters and unobserved frailties (Lee et al., 2017). The h-likelihood avoids such integration itself
and provides the inference for unobservable random effects (Ha et al., 2001). A big merit of h-
likelihood is that once the statistical model is specified, the required inference procedures can be
made: See (Jin and Lee, 2020) for recent review of h-likelihood.

Given a random sample (Yi j, Xi j,Zi j, δi j), the log likelihood was obtained as follows:

l =

n∑
i=1

ni∑
j=1

δi j log
[(

e−z′i jγ + 1
)−1

+

[
1 −

(
e−z′i jγ + 1

)−1
] (

1 − e−e
x′i jθ++U0,i

)]
+

n∑
i=1

ni∑
j=1

(
1 − δi j

)
log

[[
1 −

(
e−z′i jγ + 1

)−1
]

+

(
e−yi j

βee
x′i jθ++U0,i

− e−(yi j+1)βee
x′i jθ++U0,i

)]
+

n∑
i=1

ni∑
j=1

log fX,Z

(
Xi j, zi j

)
+

n∑
i=1

{
−

1
2

log(2π) −
1
2

log
(
σ2

0

)
−

1
2

u2
0,i

}
. (2.6)

The score function is given as

S n,k,l (θ,γ, β,u0) =



∂l
(
y,x,θ,γ,β

)
∂θ0

∂l
(
y,x,θ,γ,β

)
∂θk

∂l
(
y,x,θ,γ,β

)
∂γ0

∂l
(
y,x,θ,γ,β

)
∂γl

∂l
(
y,x,θ,γ,β

)
∂β

∂l
(
y,x,θ,γ,β

)
∂u0,i

for k = 1, . . . , p; l = 1, . . . , q; i = 1, . . . , n, (2.7)

where

∂l (y, x, θ,γ, β)
∂θ0

=

n∑
i=1

ni∑
j=1

δi j

[
1 −

(
e−z′i jγ + 1

)−1
]

wzli j (γ, θk)

[
exi j

′θ+uo,i−exi j
′θ+u0,i

]
+

n∑
i=1

ni∑
j=1

(
δi j − 1

) [
yβi je

−yβi je
xi j′θ+u0,i

− (yi j + 1)βe−(yi j+1)βexi j′θ+uo,i
]

wzli j (γ, θk)
,
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∂l (y, x, θ,γ, β)
∂θk

=

n∑
i=1

ni∑
j=1

δi j

[
1 −

(
e−z′i jγ + 1

)−1
]

wzli j (γ, θk)

[
xikexi j

′θ+u0,i−exi j
′θ+u0,i

]
+

n∑
i=1

ni∑
j=1

(
δi j − 1

)
xik

[
yβi je

−yβi je
xi j′θ+u0,i

− (yi j + 1)βe−(yi j+1)βexi j′θ+u0,i
]

wzli j (γ, θk)

with wzli j (γ, θ) =
(
e−z′i jγ + 1

)−1
+

[
1 −

(
e−z′i jγ + 1

)−1
] (

1 − e−e
x′i jθ+u0,i

)
and

∂l (y, x, θ,γ, β)
∂γ0

=

n∑
i=1

ni∑
j=1

ez′i jγl

[(
δi j − 1

)
ee

x′i jθ+u0,i (
ez′i jγl + 1

)
+ 1

]
(
ez′i jγl + 1

) (
ez′i jγl+ee

x′i jθ+u0,i

+ ee
x′i jθ+u0,i

− 1
) ,

∂l (y, x, θ,γ, β)
∂γl

=

n∑
i=1

ni∑
j=1

γlez′i jγl

[(
δi j − 1

)
ee

x′i jθ+u0,i
(
ee

z′i jγl +1
)

+ 1
]

(
ez′i jγl + 1

) (
ez′i jγl+e

x′i jθ+u0,i
+ ee

x′i jθ+u0,i
− 1

) ,

∂l (y, x, θ,γ, β)
∂β

=

n∑
i=1

ni∑
j=1

(
δi j − 1

)
exi j

′θ
[
yβi j log(yi j)e−(yi j+1)βe

x′i jθ+u0,i
− yβi j log(yi j + 1)e−(yi j)βe

x′i jθ+u0,i
]

e−(yi j+1)βe
x′i jθ+u0,i

− e−yβi je
x′i jθ+u0,i

∂l (y, x, θ, ,γ, β)
∂u0,i

=

n∑
i=1

ni∑
j=1

(
δi j − 1

) [
yβi je

−yi j
βe

x′i jθ+u0,i
−

(
yi j + 1

)β
e−(yi j+1)βe

x′i jθ+u0,i
]

e−yβi je
x′i jθ+u0,i

− e−(yi j+1)βe
x′i jθ+u0,i

+

n∑
i=1

ni∑
j=1

δi j

[
1 −

(
e−z′i jγ + 1

)−1
] (

e−exi j′θ+u0,i
)

wzli j (γ, θk)
− u0,i.

The parameters θ,γ, β and u0 can be obtained by solving S n,k,l(θ,γ, β,u0) = 0. Parameter σ2
0 was

estimated through the second-stage procedure (Lee and Nelder, 1996). The variance–covariance ma-
trix V(θ,γ, β,u0) of the maximum h-likelihood estimators was obtained as follows from the expected
inverse of the Fisher information matrix:

V (θ,γ, β,u0) = E
(
−

∂2l
∂(θ,γ, β,uo)

)
. (2.8)

We restricted our scope to the case with the number of clusters fixed in advance and with an equal
cluster size. We calculated the required sample size by modifying the methods of Channouf et al.
(2014), which used a conditional expectation on the covariates using a Monte Carlo simulation for
sample generation. The following hypothesis was tested:

H0 : θ1 = 0 vs. H1 : θ1 , 0. (2.9)
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Table 1: Calculated sample size for testing H0 : θ1 = 0 vs. H1 : θ1 = −0.7 at various excess zero probabilities
and parameter settings under nominated powers of 80 and 90% with five clusters

π β σ
80% 90%

N Est power N Est power

10%
0.5 0.3 51 0806 69 0.900

2 58 0.809 77 0.911

2 0.3 59 0.805 78 0.900
2 63 0.795 84 0.910

30%
0.5 0.3 70 0.795 93 0.897

2 78 0.791 104 0.900

2 0.3 78 0.806 104 0.882
2 85 0.788 114 0.900

50%
0.5 0.3 98 0.791 132 0.913

2 108 0.811 144 0.910

2 0.3 111 0.814 149 0.902
2 113 0.787 158 0.887

The sample size was calculated based on four steps. In the first step, the maximum likelihood
estimates of parameters θ = (θ0, θ1, . . . , θp)′,γ = (γ0, γ1, . . . , γq)′, β, and u0 = (u0,1, . . . , u0,n)′ under
the null hypothesis were obtained by solving the score function expectation as follows:

E
[(
θ0, 0, . . . , θp,γ, β,u0

)
| X = x, Z = z

]
= 0. (2.10)

The parameters obtained from Equation (2.10) are denoted as θ∗ = (θ∗0, 0, θ
∗
2, . . . , θ

∗
p)′,γ∗ = (γ∗0, γ

∗
1,

. . . , γ∗q)′, β∗, and u0
∗ = (u∗0,1, . . . , u

∗
0,n). In the second step, the parameter variance was calculated under

the null and alternative hypothesis. These variances, which were secondary diagonal elements, were
obtained through the inverse of the Fisher information matrix and denoted as V(θ∗0, 0, θ

∗
2, . . . , θ

∗
p, γ
∗
0, γ
∗
1,

. . . , γ∗q, β
∗, u∗0,1, . . . , u

∗
0,n)(2,2) and V(θ0, θ1, θ2, . . . , θp,, γ0, γ1, γ2, . . . , γq, β, u0,1, . . . , u0,n)(2,2).

In the third step, we calculated the sample size at each jth ( j = 1, . . . , B) Monte Carlo replication
as follows:

N′j =




√
V

(
θ∗0 , 0, θ

∗
2 , . . . , θ

∗
p , γ
∗
0 , γ
∗
1 , . . . , γ

∗
q , β
∗ , u∗0,1 , . . . , u

∗
0,n

)
(2,2)

Zα/2 +
√

V
(
θ0 , θ1 , θ2 , . . . , θp, , γ0 , γ1 , γ2 , . . . , γq , β, u0,1 , . . . , u0,n

)
(2,2)Zr

θ1

2 , (2.11)

where Zα/2 is the 100(1 − (α/2))th percentile of the standard normal distribution, and 1 − γ is power.
In the final step, the following sample size was used to test the hypothesis H0 : θ1 = 0 against the

two-sided alternative hypothesis H1 : θ1 , 0 with a specified significance level α and power 1 − γ:

NZI−DW =

∑B
j=1 N j′

B
. (2.12)

3. Simulation study

We conducted a simulation study to assess the performance of our proposed formula for the sample
size calculations. We calculated the required sample size for the 80% and 90% powers for each
parameter setting with various cluster numbers. We then compared the true nominal power with the
estimated power computed through a Monte Carlo simulation based on 1,000 independent datasets
given the sample size. We considered the case of one and two covariates. In the one covariate case,
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Table 2: Calculated sample size for testing H0 : θ1 = 0 vs. H1 : θ1 = −0.7 at various excess zero probabilities
and parameter settings under nominated powers of 80 and 90% with 10 clusters

π β σ
80% 90%

N Est power N Est power

10%
0.5 0.3 26 0.787 34 0.900

2 28 0.800 36 0.900

2 0.3 29 0.793 38 0.908
2 30 0.806 39 0.894

30%
0.5 0.3 35 0.800 46 0.887

2 37 0.805 49 0.890

2 0.3 39 0.814 52 0.913
2 41 0.789 54 0.888

50%
0.5 0.3 46 0.805 62 0.905

2 51 0.808 66 0.895

2 0.3 54 0.800 72 0.911
2 56 0.797 74 0.891

Table 3: Calculated sample size for testing H0 : θ1 = 0 vs. H1 : θ1 = −0.7 at various excess zero probabilities
and parameter settings under nominated powers of 80 and 90% with 20 clusters

π β σ
80% 90%

N Est power N Est power

10%
0.5 0.3 13 0.804 17 0.905

2 14 0.800 18 0.895

2 0.3 14 0.810 19 0.900
2 15 0.813 20 0.913

30%
0.5 0.3 18 0.800 23 0.906

2 19 0.813 24 0.900

2 0.3 20 0.809 26 0.900
2 21 0.804 27 0.910

50%
0.5 0.3 24 0.812 32 0.916

2 25 0.808 33 0.900

2 0.3 26 0.792 35 0.910
2 27 0.805 36 0.902

we assumed a uniform distribution X ∼ U(0, 1) and set the parameters to θ0 = −1, θ1 = −0.7 each
to model the q(Xi j) function. The random effect was assumed to follow a normal distribution with
0 mean and σ2

0,U0,i ∼ N(0 σ2
0) variance. We observed the effect of the random-effect variance by

considering two different values of σ0 = 0.3, 2. Moreover, we considered three different values
for the zero-inflated parameter π = 10%, 30%, 50% for each representing the case of a rather small
amount of zeros, a moderate amount of zeros, and a large amount of zeros in zero-state data. The
Bernoulli distribution Z ∼ B(0.5) was assumed for the corresponding covariate of the zero-inflated
model. Parameters γ0 and γ1 satisfied each corresponding π value. For the dispersion parameter, we
set two different values as β = 0.5, 2 to determine how the sample size is affected by the distribution
skewness. Table 1 presents the required sample sizes for testing H0 : θ1 = 0 vs. H1 : θ1 = −0.7
with a significance level of α = 0.05 and powers of 1 − γ = 0.8 and 0.9. Along with Table 1,
Tables 2 and 3 show the results for the 5, 10, and 20 cluster numbers, respectively. The estimated
power calculated based on the sample size formula for each covariate X distribution was close to the
true nominated power, showing that our proposed sample size methodology was very accurate. The
sample generally required increases as the dispersion parameter β increased. The increased dispersion
parameter decreased the conditional mean value of the response variable, thereby requiring a larger
sample size. The bigger variance of the random effect demonstrated a sample size increase. In each



Sample size based on clustered zero-inflated discrete Weibull model 61

Table 4: Calculated sample size for testing H0 : θ1 = 0 vs. H1 : θ1 = 0.2 at various correlations of the two
covariates and parameter settings under the nominated powers of 80% and 90% with five clusters

ρ π β σ
80% 90%

N Est power N Est power

0.3

10%
0.5 0.3 58 0.793 78 0.888

2 66 0.808 88 0.895

2 0.3 68 0.812 92 0.904
2 72 0.797 96 0.900

30%
0.5 0.3 80 0.788 107 0.890

2 88 0.805 118 0.900

2 0.3 94 0.810 125 0.900
2 98 0.794 131 0.900

50%
0.5 0.3 111 0.782 148 0.893

2 127 0.800 169 0.913

2 0.3 136 0.813 183 0.909
2 142 0.816 190 0.905

0.7

10%
0.5 0.3 101 0.813 139 0.913

2 116 0.796 157 0.882

2 0.3 115 0.800 160 0.887
2 127 0.810 174 0.888

30%
0.5 0.3 140 0.805 190 0.911

2 157 0.811 216 0.903

2 0.3 161 0.792 225 0.913
2 173 0.790 240 0.900

50%
0.5 0.3 199 0.790 263 0.912

2 225 0.788 299 0.890

2 0.3 223 0.820 313 0.900
2 233 0.800 335 0.893

table, the required sample size for the fixed β and σ0 increased by 30% when π = 30% and up to 100%
when π = 50% compared to when π = 10% in average. The simulation study revealed that the required
sample size was affected not only by the data skewness, but also by the zero-inflated parameter.

We held a simulation study with two covariates because the real data may contain more than one
covariate. We assumed two covariates X1 and X2 following a bivariate normal distribution with mean
µ′ = (0, 0) and a variance–covariance matrix as

∑
=

(
1 ρ
ρ 1

)
with ρ = 0.3 and 0.7, respectively. We set

parameters θ0 = −1, θ1 = 0.2, and θ2 = 0.2. Tables 4–6 present the required sample sizes for testing
H0 : θ1 = 0 vs. H1 : θ1 = 0.2 with a significance level of α = 0.05 and powers of 1 − γ = 0.8 and
0.9. Similar to the case with one covariate, the calculated power based on the calculated sample size
was close to the true power. The effects of the parameters on the sample size were similar to those of
one covariate. As regards the correlation effect between the covariates, a larger correlation ρ of the
two covariates increased the required samples size. The sample size increased by 70% when ρ = 0.7
compared to when ρ = 0.3 in average.

4. Illustrative example

We applied our sample size calculation method to a real dataset. Yau et al. (2003) analyzed the
pancreas disorder length of stay (LOS) data collected from 261 patients in Western Australia. The
patients were collected from 36 different public hospitals. Yau et al. (2003) studied the factors
associated with the patient LOS. The LOS distribution was highly skewed. The number of zeros
was 17%. Among many risk factors affecting the LOS, the admission status (elective or emergency)
was one of the factors associated with the LOS. We referred to their results to set the parameter



62 Hanna Yoo

Table 5: Calculated sample size for testing H0 : θ1 = 0 vs. H1 : θ1 = 0.2 at various correlations of the two
covariates and parameter settings under the nominated powers of 80 and 90% with 10 clusters

ρ π β σ
80% 90%

N Est power N Est power

0.3

10%
0.5 0.3 30 0.800 40 0.917

2 33 0.787 43 0.897

2 0.3 34 0.800 46 0.913
2 36 0.805 48 0.886

30%
0.5 0.3 41 0.810 53 0.912

2 44 0.793 58 0.900

2 0.3 48 0.805 62 0.906
2 49 0.797 64 0.897

50%
0.5 0.3 56 0.794 72 0.905

2 60 0.800 79 0.912

2 0.3 63 0.812 85 0.906
2 67 0.790 88 0.905

0.7

10%
0.5 0.3 51 0.788 68 0.907

2 58 0.806 77 0.915

2 0.3 59 0.800 79 0.908
2 64 0.795 84 0.894

30%
0.5 0.3 71 0.806 92 0.912

2 79 0.800 103 0.888

2 0.3 83 0.816 108 0.884
2 87 0.800 114 0.890

50%
0.5 0.3 97 0.813 124 0.915

2 109 0.796 141 0.912

2 0.3 109 0.800 146 0.895
2 120 0.805 156 0.900

values needed to calculate the required sample size. Furthermore, we considered a single covariate
Z, X ∼ B(0.5) assumed to be the admission status to model the ZI-DW regression model. The DW
parameters were set as θ0 = −1.00, θ1 = −0.52, and β = 1.1. The zero-inflation part parameters were
set as γ0 = −2.3, γ1 = −6.0. The standard deviation of the random intercept was set as 0.9. Based on
our sample size calculation, four children were required in each cluster. As shown in Table 7, based on
our proposed sample size method 144 patients were required under 80% power (i.e., 180 patients were
required to acquire 90% power), which was only 55% of the data (261) that were actually analyzed.

5. Conclusion

In this study, we proposed a sample size calculation method for the clustered ZI-DW regression model.
A random intercept was incorporated into a regression model. A Monte Carlo simulation was used to
calculate the conditional expectation of the score function and the parameter variances under the null
and alternative hypothesis. Our proposed sample size calculation method showed accurate results in
the conducted simulation study. The sample size was affected by the distribution skewness, cluster
number, and random-effect variance. In addition, the correlation between the variables and the amount
of zeros in the data was found to affect the required sample size.

We believe that the proposed sample size method based on the clustered ZI-DW regression model
is a suitable choice because it can handle both overdispersed and underdispersed data types at the
presence of an excessive number of zeros, which may have been caused by a subpopulation with only
zero counts. In this work, our method was restricted to the case with an equal cluster size. Thus,
the future study should perform a sample size calculation that can handle an unequal cluster size and
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Table 6: Calculated sample size for testing H0 : θ1 = 0 vs. H1 : θ1 = 0.2 at various correlations of the two
covariates and parameter settings under the nominated powers of 80 and 90% with 20 clusters

ρ π β σ
80% 90%

N Est power N Est power

0.3

10%
0.5 0.3 14 0.812 19 0.900

2 16 0.800 21 0.895

2 0.3 17 0.806 23 0.913
2 18 0.800 23 0.895

30%
0.5 0.3 20 0.795 27 0.900

2 22 0.803 29 0.903

2 0.3 24 0.815 31 0.893
2 28 0.812 32 0.906

50%
0.5 0.3 27 0.813 36 0.908

2 29 0.806 39 0.890

2 0.3 31 0.800 42 0.904
2 32 0.804 43 0.900

0.7

10%
0.5 0.3 25 0.788 33 0.913

2 28 0.812 38 0.905

2 0.3 29 0.813 38 0.908
2 31 0.795 41 0.890

30%
0.5 0.3 35 0.794 46 0.912

2 38 0.803 51 0.890

2 0.3 40 0.800 53 0.895
2 42 0.797 56 0.903

50%
0.5 0.3 47 0.816 62 0.910

2 52 0.813 69 0.906

2 0.3 55 0.806 72 0.910
2 58 0.794 76 0.900

Table 7: Sample size results of the pancreas disorder length of stay (LOS) data

Actual sample size Required sample size

261 80% power 90% power
144 180

extend the model to a Bayesian approach, which offers more flexibility in model specification and
uses prior information.
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