• Title/Summary/Keyword: zero-inflated

Search Result 79, Processing Time 0.02 seconds

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

Moments of the Bivariate Zero-Inflated Poisson Distributions (이변량 영과잉-포아송 분포의 적률)

  • Kim, Kyung-Moo;Lee, Sung-Ho;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.47-56
    • /
    • 1998
  • Zero-Inflated Poisson models are mixed models of the Poisson and Bernoulli models. Recently Zero-Inflated Poisson distributions have been used frequently rather than previous Poisson distributions because the developement of industrial technology make few defects in manufacturing process. It is important that univariate Zero-Inflated Poisson distributions are extended to bivariate distributions to generalize the multivariate distributions. In this paper we proposed three types of the bivariate Zero-Inflated Poisson distributions and obtained these moments. We compared the three types of distributions by using the moments.

  • PDF

Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model (이변량 영과잉-포아송모형에서 변화시점에 관한 추론)

  • Kim, Kyung-Moon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.319-327
    • /
    • 1999
  • Zero-Inflated Poisson distributions have been widely used for defect-free products in manufacturing processes. It is very interesting to check the shift after the unknown changepoint. If the detectives are caused by the two different types of factor, we should use bivariate zero-inflated model. In this paper, likelihood ratio tests were used to detect the shift of changes after the changepoint. Some inferences for the parameters in this model were made.

  • PDF

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.

A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior (랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용)

  • Kim, Yeon Kyoung;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.287-301
    • /
    • 2018
  • It is common to encounter count data with excess zeros in various research fields such as the social sciences, natural sciences, medical science or engineering. Such count data have been explained mainly by zero-inflated Poisson model and extended models. Zero-inflated count data are also often correlated or clustered, in which random effects should be taken into account in the model. Frequentist approaches have been commonly used to fit such data. However, a Bayesian approach has advantages of prior information, avoidance of asymptotic approximations and practical estimation of the functions of parameters. We consider a Bayesian zero-inflated Poisson regression model with random effects for correlated zero-inflated count data. We conducted simulation studies to check the performance of the proposed model. We also applied the proposed model to smoking behavior data from the Regional Health Survey (2015) of the Korea Centers for disease control and prevention.

Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application (조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).

A Zero-Inated Model for Insurance Data (제로팽창 모형을 이용한 보험데이터 분석)

  • Choi, Jong-Hoo;Ko, In-Mi;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2011
  • When the observations can take only the non-negative integer values, it is called the count data such as the numbers of car accidents, earthquakes, or insurance coverage. In general, the Poisson regression model has been used to model these count data; however, this model has a weakness in that it is restricted by the equality of the mean and the variance. On the other hand, the count data often tend to be too dispersed to allow the use of the Poisson model in practice because the variance of data is significantly larger than its mean due to heterogeneity within groups. When overdispersion is not taken into account, it is expected that the resulting parameter estimates or standard errors will be inefficient. Since coverage is the main issue for insurance, some accidents may not be covered by insurance, and the number covered by insurance may be zero. This paper considers the zero-inflated model for the count data including many zeros. The performance of this model has been investigated by using of real data with overdispersion and many zeros. The results indicate that the Zero-Inflated Negative Binomial Regression Model performs the best for model evaluation.

Developing the Accident Models of Cheongju Arterial Link Sections Using ZAM Model (ZAM 모형을 이용한 청주시 간선가로 구간의 사고모형 개발)

  • Park, Byung-Ho;Kim, Jun-Yong
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • This study deals with the traffic accident of the Cheongju arterial link sections. The purpose of the study is to develop the traffic accident model. In pursuing the above, this study gives particular attentions to developing the ZAM(zero-altered model) model using the accident data of arterial roads devided by 322 small link sections. The main results analyzed by ZIP(zero inflated Poisson model) and ZINB(zero inflated negative binomial model) which are the methods of ZAM, are as follows. First, the evaluation of various developed models by the Vuong statistic and t statistic for overdispersion parameter ${\alpha}$ shows that ZINB is analyzed to be optimal among Poisson, NB, ZIP(zero-inflated Poisson) and ZINB regression models. Second, ZINB is evaluated to be statistically significant in view of t, ${\rho}$ and ${\rho}^2$ (0.63) values compared to other models. Finally, the accident factors of ZINB models are developed to be the traffic volume(ADT), number of entry/exit and length of median. The traffic volume(ADT) and the number of entry/exit are evaluated to be the '+' factors and the length of median to be '-' factor of the accident.

Heat-Wave Data Analysis based on the Zero-Inflated Regression Models (영-과잉 회귀모형을 활용한 폭염자료분석)

  • Kim, Seong Tae;Park, Man Sik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2829-2840
    • /
    • 2018
  • The random variable with an arbitrary value or more is called semi-continuous variable or zero-inflated one in case that its boundary value is more frequently observed than expected. This means the boundary value is likely to be practically observed more than it should be theoretically under certain probability distribution. When the distribution considered is continuous, the variable is defined as semi-continuous and when one of discrete distribution is assumed for the variable, we regard it as zero-inflated. In this study, we introduce the two-part model, which consists of one part for modelling the binary response and the other part for modelling the variable greater than the boundary value. Especially, the zero-inflated regression models are explained by using Poisson distribution and negative binomial distribution. In real data analysis, we employ the zero-inflated regression models to estimate the number of days under extreme heat-wave circumstances during the last 10 years in South Korea. Based on the estimation results, we create prediction maps for the estimated number of days under heat-wave advisory and heat-wave warning by using the universal kriging, which is one of the spatial prediction methods.

Traffic Crash Prediction Models for Expressway Ramps (고속도로 연결로의 교통사고예측모형 개발)

  • Choi, Yoon-Hwan;Oh, Young-Tae;Choi, Kee-Choo;Lee, Choul-Ki;Yun, Il-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.133-143
    • /
    • 2012
  • PURPOSES: Using the collected data for crash, traffic volume, and design elements on ramps between 2007 and 2009, this research effort was initiated to develop traffic crash prediction models for expressway ramps. METHODS: Three negative binomial regression models and three zero-inflated negative binomial regression models were developed for individual ramp types, including direct, semi-direct and loop, respectively. For validating the developed models, authors compared the estimated crash frequencies with actual crash frequencies of twelve randomly selected interchanges, the ramps of which have not been used for model developing. RESULTS: The results show that the negative binomial regression models for direct, semi-direct and loop ramps showed 60.3%, 63.8% and 48.7% error rates on average whereas the zero-inflated negative binomial regression models showed 82.1%, 120.4% and 57.3%, respectively. CONCLUSIONS: Conclusively, the negative binomial regression models worked better in traffic crash prediction than the zero-inflated negative binomial regression models for estimating the frequency of traffic accidents on expressway ramps.