• Title/Summary/Keyword: xylanase

Search Result 466, Processing Time 0.022 seconds

Isolation and Characterization of Xylanase-producing Paenibacillus sp. HY-8 from Moechotypa diphysis (털두꺼비하늘소 (Moechotypa diphysis)로부터 Xylanase를 생산하는 Paenibacillus sp. HY-8 균주의 분리 및 특성)

  • Heo, Sun-Yeon;Oh, Hyun-Woo;Park, Doo-Sang;Kim, Hyang-Mi;Bae, Kyung-Sook;Park, Ho-Yong
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.303-311
    • /
    • 2007
  • From the course of screening of useful xylanase producing microorganism from a phytophagous longicorn beetle, we isolated an extra-cellular xylanase producing strain, Paenibacillus sp. HY-8 from the intestine of Moechotypa diphysis adult. On the basis of morphological, biochemical and phylogenetic studies of the new isolate was identified as a Paenibacillus species. Production of xylanase in this strain was strongly induced by adding xylan to the growth medium and repressed by glucose or xylose. The highest xylanase production was attained in the M9 media containing 1% yeast extract and 0.5% birchwood xylan when cultured at $25^{\circ}C$ for 24 hrs. HY-8 producing xylanase showed superior hydrolytic activities against various plant source feedstuff than control xylanase produced by Tricoderma sp. at pH 6.0.

Nutritional Conditions of Xylanase Production from Xylose Fermenting Yeast (Xylose 발효효모의 Xylanase 생성)

  • 배명애;김남순;방병호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.85-87
    • /
    • 1989
  • Cultural conditions for the formation of extracellular xylanase by Candida sp. X-6-41 were investigated. The xylanase was not produced in culture medium containing polypeptone or yeast extract as a nitrogen source, respectively, whereas the enzyme w8s produced in chemically defined medium containing (NH$_4$)$_2$SO$_4$as a sole nitrogen source. The xylanase production was affected by the amino acids such as isoleucine and tryptophan. The enzyme production of the strain was completely inhibited by the addition of isoleucine in the culture medium, but enhanced by tryptophan below the concentration of 25$\mu$g/$m\ell$.

  • PDF

Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran

  • Lee, Jun-Ho;Choi, Suk-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1856-1861
    • /
    • 2006
  • A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.

Effects of Xylanase on the Baking Properties of Sorghum (Xylanase 첨가에 따른 수수의 제빵 적성 변화)

  • Ahn, Ji Eun;Go, Ji Yeon;Koh, Bong Kyung
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2015
  • This study investigated the baking properties of sorghum with the addition of xylanase or Pentopan, which is a baking additive containing xylanase. The control bread was made with a 30% substitution for wheat flour and the optimum level of enzyme addition was 0.75 mg/g flour for Pentopan and 5 mg/g flour for xylanase. The water binding capacity of wheat flour increased with the addition of sorghum, but decreased with the addition of either xylanase or Pentopan. The resistance of dough increased while extensibility decreased with the addition of sorghum; however, resistance decreased while extensibility increased with the addition of the enzyme. Specific volume of bread decreased significantly with the addition of sorghum. However, the specific volume was significantly recovered with the addition of enzyme. Crumb firmness was higher in the sorghum-added sample, but crumb firmness of the bread decreased with the addition of the enzyme. The crumb firmness of bread with added xylanase decreased significantly in 24 hours. These results demonstrated that adding sorghum with either xylanase or Pentopan that included xylanase increased specific volume and decreased crumb firmness whereas sorghum decreased the quality of fermented bread when added to wheat flour. The firmness rate of fermented bread particularly decreased with the addition of pure xylanase.

Molecular Cloning and Nucleotide Sequence of Xylanase gene (xynT) from Bacillus alcalophilus AX2000. (Bacillus alcalophilus AX2000 유래 xylanase 유전자 (XynT)의 Cloning과 염기서열 분석)

  • Park Young-Seo
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.734-738
    • /
    • 2005
  • A gene coding for xylanase from alkali-tolerant Bacillus alcalophilus AX2000 was cloned into Escherichia coli $DH5\alpha$ using pUC19. Among 2,000 transformants, one transformant showed clear zone on the detection agar plate containing oat-spells xylan. Its recombinant plasmid, named pXTY99, was found to carry 7.0 kb insert DNA fragment. When the nucleotide sequence of the cloned xylanase gene (xynT) was determined, xynT gene was found to consist of 1,020 base-pair open reading frame coding for a poly-peptide of 340 amino acids with a deduced molecular weight of 40 kDa. The coding sequence was preceded by a putative ribosome binding site, and the transcription initiation signals. The deduced amino acid sequence of xylanase is similar to those of the xylanases from Bacillus sp. Nl37 and B. stearothermophilus 21 with $61\%$ and $59\%$ identical residues, respectively.

Characterization and Xylanase Productivity of Streptomyces sp. YB914 (Xylanase를 생산하는 Streptomyces sp. YB914의 특성과 효소 생산성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.383-388
    • /
    • 2009
  • A strain YB914 was isolated from soil as a producer of the extracellular xylanase, which catalyzes the hydrolysis of oat spelt xylan. The strain YB914 was identified as Streptomyces sp. on the basis of its morphological, cultural and biochemical properties. The xylanase of culture filtrate was the most active at $55^{\circ}C$ and pH 5.5, and retained 80% of its maximum activity at the range of pH 4.5~7.0. In order to optimize the culture medium for xylanase production, ingredients of G.S.S medium were replaced by several carbohydrates. The carbohydrates such as oat spelt xylan, corn cob xylan, wheat bran and lactose increased the xylanase productivity of Streptomyces sp. YB914. However, xylanase production was greatly repressed by galactose or arabinose. The maximum xylanase productivity was reached to 48 U/mL in the modified medium containing 1% oat spelt xylan and 1.5% lactose.

Isolation and Enzyme Production of a Xylanase-producing Strain, Bacillus sp. AMX-4. (Xylanase를 생산하는 Bacillus sp. AMX-4 균주의 분리와 효소 생산성)

  • 윤기홍;설숙자;조효찬;이미성;최준호;조기행
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.123-128
    • /
    • 2002
  • A bacterium producing the extracellular xylanase was isolated from soil and has been identified as a Bacillus sp. strain. The isolate, named Bacillus sp. AMX-4, was shown to be similar to B. subtilis strain on the basis of its chemical compositions. The xylanase of culture supernatant was most active at 50℃ and pH 6.0. The additional carbon sources including monosaccharides, disaccharides, wheat bran, and rice straw increased the enzyme productivity. Especially, the maximum xylanase productivity was reached 29.2 units/ml in LB medium supplemented with 1.5% (w/v) xylose, which was 16-folds more than that in LB medium. As the results of investigating the effects of xylose on cell growth and xylanase productivity of Bacillus sp. AMX-4, increase of xylanase production was owing to the induction of xylanase biosynthesis. It was also found that the enzyme production was in association with the growth of Bacillus sp. AMX-4.

Properties of Aspergillar Xylanase and the Effects of Xylanase Supplementation in Wheat-based Diets on Growth Performance and the Blood Biochemical Values in Broilers

  • Wu, Yubo;Lai, Changhua;Qiao, Shiyan;Gong, Limin;Lu, Wenqing;Li, Defa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.66-74
    • /
    • 2005
  • Three experiments were conducted to study the property of xylanase and the effects of xylanase in wheat-based diets on growth performance of broilers, respectively. Experiment 1 was performed in vitro to evaluate the effect of different pH and temperature on xylanase activity, and to evaluate the enzymic stability under different conditions. The results indicated that the optimum temperature and pH for xylanase activity were $50^{\circ}C$ and 4.5, respectively. The activity of enzyme solution was reduced rapidly after the treatment of water bath above $60^{\circ}C$ for 10 min. The enzyme was relatively stable at pH 3.5 to 8.0 and deteriorated when incubated at pH below 3.5. In Experiment 2, a total of 378 d-old male Arbor Acres broilers were randomly distributed to 7 different treatments with 6 replicates (9 birds) in each treatment. The treatments were as follows: (1) corn based diet (CS), (2) wheat based diet (WS), (3) WS+ 0.05% xylanase, (4) WS+0.15% xylanase, (5) WS+0.25% xylanase, (6) WS+0.35% xylanase, (7) WS+0.45% xylanase. The results showed that the body weight and feed/gain ratio of the broilers fed wheat-based diets have been significantly improved (p<0.05) compared to that fed corn-based diet in the first 3 wk. With regard to the wheat-based diets, the xylanase supplementation had a tendency to improve the growth performance in first 3 wk. After 3 wk, no significant difference (p>0.05) was found among all these different treatments. The supplementation of xylanase and the type of diets did not affect the feed intake but increased the concentration of triglyceride in serum. In Experiment 3, a total of 360 d-old male Arbor Acres broilers were assigned to 30 groups with 12 birds in each group randomly. These groups were then randomly distributed to 5 different treatments with 6 replicates within each treatment. The broilers of each treatment were fed one of the diets as follows: (1) Corn based diet, (2) White wheat based diet (WW) (3) White wheat based diet+0.25% xylanase, (4) Red wheat based diet, (5) Red wheat based diet+0.25% xylanase. The results showed that the body weight and feed/gain ratio had been significantly improved (p<0.05) by xylanase supplementation in the first 2 or 3 wk. The effect of xylanase in red wheat diet is a little higher than that used in white wheat diet. From the results of the present experiments, it can be concluded that the supplementation of Aspergillar xylanase can improve the performance of the broilers fed the wheat-based diet.

Studies on Enzyme of the the Thermophilic Mold (PartV.) Purification of Xylanase (고온성 사상균의 효소에 관한 연구 (제5보) Xylanase의 정제)

  • Kim, Kwan;Kim, Yang-Hee;Jung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.3
    • /
    • pp.133-140
    • /
    • 1974
  • 1) Two xylanase (designed as A and B) of Myriococcus albomyces were purified from an extract of wheat koji culture. Puriscation steps included first ammonium sulfate fractionation followed successively by SE-Sephadex column chromatgraphy. DEAE-Sephadex column chromatography and gel filtration on Sephadex G-100 repectively. 2) The optimum pH and pH stability for crude xylanse were found to be pH 5.0 and pH 4.0-7.0 respectively. 3) The optimium temperature was found to he 5$0^{\circ}C$ and for the thermal statbility of xylanase, the enryme incubated at $65^{\circ}C$ for 60min did not affect their stability. 4) The purised xylanase A and B were considered as liquefying xylanase and saccharogenic xylauase repectively. 5) The Bylanase A was most active at pH 4.0 and range of pH 3.0-8.0 at 3$0^{\circ}C$ for six hrs. The B was most active at pH 5.0 showing stability range of pH 4.0 to 8.5 at 3$0^{\circ}C$ for 6 hrs. incubation respectively. The Optimum temperature of xylanase A and B were found to be 7$0^{\circ}C$ and $65^{\circ}C$ for 60min repectively.

  • PDF

Production and Properties of Mannanase and Xylanase by a Bacillus subtilis Isolate (Bacillus subtilis 분리균의 Mannanase와 Xylanase 생산성과 효소 특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.204-211
    • /
    • 2015
  • A bacterial strain capable of hydrolyzing xylan and locust bean gum (LBG) was isolated from the Saemangeum tideland of Korea. Based on the biochemical properties and the 16S rRNA gene sequence, the isolate YB-30 was identified as Bacillus subtilis. Xylanase productivity was increased effectively when B. subtilis YB-30 was grown in the presence of wheat bran, while mannanase productivity was increased drastically when grown in the presence of konjac or LBG. Particularly, maximum mannanase and xylanase activities were detected in the culture filtrate of media containing 3.5% konjac and 1% wheat bran. Both enzyme productivities reached maximum levels in the stationary growth phase. The culture filtrate exhibited the highest activity at 60℃ and pH 6.0 for mannanase and at 55℃ and pH 5.5 for xylanase, respectively. Both enzymes were not stable at high temperatures and xylanase was less stable than mannanase. In addition, wheat bran was hydrolyzed to liberate reducing sugar to a greater extent than rice bran by the culture filtrate because the wheat bran contained more arabinoxylan than the rice bran. Hence, xylanase and mannanase produced by B. subtilis YB-30 have a potential use as feed additive enzymes.